ºÇ½é¤Ë¤Ê¤¼ DS diagram ¤�̲½¤¹¤�«¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤�£
Dehn suegery ¤Ç¤â¤½¤¦¤À¤¬¡¤Â¿ÍÍÂΤ½¸½¤¹¤��Ë¡¤Ç´ÜŪ¤Ê»Ï¡¤ 2¤Ä¤Îɽ¸½¤¬Æ±Áê¤Ê¿ÍÍÂΤ¿¤¨¤�Ȥ¡¤
¤½¤Î2¤Ä¤Îɽ¸½¤Î´Ö¤Ë¤É¤ÎÍͤʴط¸¤¬¤¢¤�«¤È¤¤¤¦ÌäÂê¤Ç¤¢¤�£ Dehn suegery
¤Î¾�ç¤Ï2¤Ä¤Îɽ¸½¤¬Æ±Áê¤Ê¿ÍÍÂΤ¿¤¨¤�È¡¤ ¤¢¤��Î move ã¤Î͸ÂÎǰܤꤢ¤¦»¬Æ±ÃͤǤ¢¤�¬ÃΤé¤�Ƥ¤¤�£
DS diagram ¤Ë¤Ä¤¤¤Æ¤Ï¤½¤ÎÍͤʷ�̤ÏÆÀ¤é¤�Ƥ¤¤Ê¤¤¤¬¡¤¤Û¤ÜƱ¤¸³µÇ°¤Ç¤¢¤�
flow-spine (¤¢¤�¤¤Ï E-data)¤Ë´Ø¤·¤Æ¤ÏÀаæ¤Ë¤è¤�À¤é¤�Ƥ¤¤�£ flow-spine
¤åÌ̾å¤Î diagram¤Ë ËÝ̹¤�È¡¤ ¿¤¯¤Î¾�� DS diagram ¤Ë¤Ê¤�ΤÀ¤¬¡¤
ÆÃÊ̤ξ�ç¤Ï¤½¤¦¤Ï¤Ê¤é¤Ê¤¤¡£ ¤½¤³¤Ç DS diagram ¤Î³µÇ°¤ÈÄ¥¤¹¤�ˤè¤ê¡¤¤³¤Î·�̤ѤǤ¤�褦¤Ë¤·¤¿¤¤¡£
¤³¤�¬³ÈÄ¥¤¹¤�տޤǤ¢¤�£
¤³¤³¤Ç¥°¥é¥Õ¤È¤¤¤Ã¤¿¤� vertex ¤Þ¤Þ¤Ê¤¤ loop(hoop¤È¤â¸Æ¤Ð¤��) ¤âµ¹»³¤È¤Ë¤¹¤�£
Ä�Á
$\Delta=(S,G,f)$ ¤¬ generalized DS diagram (°�̲½¤µ¤�¿ DS diagram
ά¤·¤Æ GS ¤È½¯) ¤Ç¤¢¤�Ȥϰʲ¼¤Î¾��¤¿¤¹»¤¤¦¡£
$S=\bigcup_{i=1}^pS_i^2$ ¤Ï͸¸ĤΣ²µåÌÌ ¤Î½¸¤Þ¤ê¡¤$G$ ¤Ï$S$¾å¤Î 3-regular
¤Ê¥°¥é¥Õ¤Ç¡¤ $f$ ¤Ï $S$ ¤«¤é¤¢¤� fake surface $P$ ¤Ø¤Î onto local homeomorphism
¤Ç ¼¡¤�¤¿¤¹¡£
(1)$f|_{V(G)}:V(G)\to V(P)$ ¤Ï pointwise ¤Ë£´ÂУ±
(2)$f|_{E(G)}:E(G)\to E(P)$ ¤Ï pointwise ¤Ë£³ÂУ±
(3)$f|_{S-G}:S-G\to F(P)$ ¤Ïpointwise ¤Ë£²ÂУ±
¤¿¤À¤·¡¤$V(G),V(P)$ ¤Ï$G$ ¤ª¤è¤Ó $P$ ¤ÎĺÅÀ¡¤ $E(G),E(P)$ ¤Ï open edge㡤$F(P)$
¤Ï $P$ ¤Î open face ã¤Ç¤¢¤�£
$B=\bigcup_{i=1}^pB_i^3$ ¤¸Â¸Ä¤Î£³µåÂΤǡ¤ $\partial B_i^3=S_i^2$
¤È¹Í¤¨¤¿¤È¤, $B/f$ ¤� $M(\Delta)$ ¤È½¯¡£
³ÈÄ¥¤Ï·Á¼°Åª¤Ë¹Ô¤���¬¡¤¤³¤³¤Ç1¤ÄÌäÂ꤬ȯÀ¸¤¹¤�£ Ä̾� DS diagram ¤ÄÏÀ¤¹¤�Ȥ¡¤²æ¡¹¤Ï¼ÌÁ�$f$¤Ñ¤¤¤º¡¤ ¥é¥Ù¥�դΥ°¥é¥Õ¤Ë´Ø¤·¤ÆµÄÏÀ¤¹¤�£ DS diagram ¤Î¾�ç¤Ï¡¤¥é¥Ù¥�դΥ°¥é¥Õ¤«¤� DS diagram ¤¬ ƱÃͤ�°�դ˷è¤Þ¤ê¡¤Â¿ÍÍÂΤâ°�դ˷è¤Þ¤�£ ¤·¤«¤·GS¤Î¾�ç¤Ë¤³¤�ÏÀ®Î©¤·¤Ê¤¤¡£ ²æ¡¹¤ÏÀ®Î©¤·¤Ê¤¤¾�ç¤Î type ¤¡¤ÎÍͤËÆÃÄê¤Ç¤¤�£
��
£²¤Ä¤Î GS $\Delta=(S,G,f)$ ¤È $\Delta'=(S,G',f')$
¤¬Æ±¤¸¥é¥Ù¥�Õ¥°¥é¥Õ¤� ·è¤á¤�Ȥ¡¤ ¼¡¤ÎA,B,C ¤Îtype¤�¯¤È $M(\Delta)$
¤È $M(\Delta')$ ¤ÏƱÁê¤Ç¤¢¤�£
¥é¥Ù¥�Õ¥°¥é¥Õ¤¬Â¿ÍÍÂΤ�ÕŪ¤Ë·è¤á¤Ê¤¤Îã³°¤È¤Ê¤� 3¤Ä¤Î¥¿¥¤¥×¤Ï¼¡¤ÎÄ̤ê¤Ç¤¢¤�£
A
$X,Y$ ¤Îɬ¤Ë¤Ï¡¤ empty ¤â´Þ¤á²¿¤« subgraph ¤¬Â¸ºß¤·¤Æ¤¤¤�£ ¥é¥Ù¥� $A$ ¤²¤Ä¤â¤Ä £²¤Ä¤Î annulus ¤¬ ¤½¤�¾¤�«Ê¬¼«¿È¤È Ä¥¤�ç¤�»¤é¤���ç¤Ï $M(\Delta)=M_1\#P^3\#P^3$ ¤È¤Ê¤�£ £²¤Ä¤¬¤½¤�¾¤�¾¤Î annulus ¤ÈÄ¥¤�ç¤�»¤é¤���ç¤Ï $M(\Delta)=M_1\#S^2\times S^2$ ¤È¤Ê¤�£
B
¤¤¤º¤�ξ�ç¤� ¥é¥Ù¥� $A,B$ ¤�¤Ä annulus ¤Ï ¼«Ê¬¤ÈÎÙ¤�ç¤�ʤ¤ annulus ¤ËÄ¥¤�ç¤�µ¤��£ $AB$ ¤È¤¤¤¦¥é¥Ù¥��¤Ä 2¤Ä¤Î annulus ¤¬Ä¥¤�ç¤�µ¤Ã¤Æ¤¤¤�¬ ¤Î¥é¥Ù¥� $A$ ¤Î¾¯¤·³°¤Îɬ¤³¦¤È¤¹¤� proper ¤Ê disk ¤� $D_1,D_2$ ¤È¤¹¤�£ $f(D_1\cup D_2)$ ¤¬ separating $2$-sphere ¤Î¤È¤¤Ï¿ÍÍÂÎ¤Ï °�ÕŪ¤Ç $M(\Delta)=S^2\times S^1\#N_1\#N_2$ ¤È¤Ê¤ê¡¤ ¤½¤¦¤Ç¤Ê¤¤¤È¤°��¤Ï $M(\Delta)=M_1\#S^2\times S^1\#S^2\times S^1$¡¤Â¾Ê�¤Ï $M(\Delta)=M_1\#S^2\times S^1\#S^2_\tau\times S^1$¤È¤Ê¤�£ ¤¿¤À¤·¡¤$S^2_\tau\times S^1$ ¤Ï $S^1$ ¾å¤Î twisted $S^2$--bundle¡£
C
$3W$¤È½«¤�¿ loop ¤Ï $f$ ¤Ç¹Ô¤Àè¤Î loop ¤Ë3½ÅÈ�¤¤È¤·¤Æ¼Ì¤µ¤��£ Ʊ°��λÅÊ�¤Ë¤è¤�$M_1\#L(3,1)$ ¤Þ¤¿¤Ï $M_1\#L(3,2)$ ¤Ë¤Ê¤�£