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概 要
Nakamura-Nakanishi-Satoh-Wada [2] introduced a local deformation called vir-
tualized ∆-move for virtual links, and proved that it is an unknotting operation
for virtual knots. In this paper, we introduce virtualized n-gon move as a gen-
eralization of virtualized ∆-move. We show that virtualized n-gon move is an
unknotting operation for virtual knots when n ≥ 3, and give a lower bound for the
unknotting number, which we call the v[n]-unknotting number, in terms of odd
writhes. This is a joint work with Yeonhee Jang (Nara Women’s University).

1. Introduction

Definition 1.1. A virtualized ∆-move (or a v∆-move) is a local deformation on a virtual link
diagram as shown in Figure 1. We denote it by v∆ in figures.

Figure 1:

Two virtual links L and L′ are v∆-equivalent to each other if their diagrams are related by
a finite sequence of v∆-moves and generalized Reidemeister moves.

Theorem 1.2. [2, Theorem 1.3] Any two virtual knots are v∆-equivalent to each other. In
particular, the v∆-move is an unknotting operation for virtual knots.

Definition 1.3. Let n ≥ 2 be an integer. A virtualized n-gon move (or a v[n]-move) is a local
deformation on a virtual link diagram as shown in Figure 2. We denote it by v[n] in figures.

Figure 2:
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Two virtual links L and L′ are v[n]-equivalent to each other if their diagrams are related
by a finite sequence of v[n]-moves and generalized Reidemeister moves.

Proposition 1.4. Any two virtual knots are v[n]-equivalent to each other. In particular, the
v[n]-move is an unknotting operation for virtual knots.

Let uv[n](K) be the minimal number of v[n]-moves which is needed to deform a virtual
knot K into the trivial knot.

Theorem 1.5. For any integers n ≥ 3 and m ≥ 1, there exists an infinite family {Ks} of
virtual knots such that uv[n](Ks) = m.

2. v[n]-unknotting number and writhe invariant

Fact 2.1. A v[2]-move and a crossing change are equivalent local deformations, that is, they
can be realized by each other (see Figure 3).

Figure 3:

Fact 2.2. The v[3]-move is the same local deformation as v∆-move.

Proposition 2.3. A v[n]-move is realized by a v[n+ 1]-move for any n ≥ 2.

Proof. Figure4 illustrates how this can be accomplished.

Figure 4:



Proof of Proposition 1.4. It follows from Theorem 1.2 and Proposition 2.3.

Definition 2.4. For virtual knots K and K ′, we denote by dv[n](K,K ′) the minimal number
of v[n]-moves needed to deform a diagram of K into one of K ′.

By Proposition 2.3, we obtain the following corollary.

Corollary 2.5. For any virtual knots K and K ′, we have dv[n](K,K ′) ≥ dv[n+1](K,K ′). In
particular, uv[n](K) ≥ uv[n+1](K).

Satoh-Taniguchi [4] introduced the k-writhe Jk(D) of a virtual knot diagram D for each
k ∈ Z, defined by

Jk(D) :=
∑

Ind(c)=k

sgn(c).

Lemma 2.6. [4, Lemma 2.3] If D and D′ are virtual knot diagrams related by a finite se-
quence of generalized Reidemeister moves, then Jk(D) = Jk(D

′) for any k ̸= 0.

Hence, Jk(K) is well-defined for a virtual knot K. Also, the odd writhe J(K) is

J(K) :=
∑
k:odd

Jk(K).

Proposition 2.7. Let K and K ′ be virtual knots. Then we have the following.

(1)

dv[n](K,K ′) ≥


1

n
|J(K)− J(K ′)| (n : even),
1

n− 1
|J(K)− J(K ′)| (n : odd).

(2)

uv[n](K) ≥


1

n
|J(K)| (n : even),
1

n− 1
|J(K)| (n : odd).

Proof. (1) Suppose that dv[n](K,K ′) = m. Then there exists a sequence of virtual knots

K = K0 → K1 → · · · → Km−1 → Km = K ′

such that Ki is obtained from Ki−1 by a single v[n]-move for each i = 1, . . . ,m. Let
G0, . . . , Gm be the Gauss diagrams of K0, . . . , Km, respectively. We can see that Gi is
obtained from Gi−1 by removing n chords corresponding to n real crossings involved
in the v[n]-move (see Figure 5). Note that the indices of the other chords are changed
by even numbers and the signs do not change. Thus, when n is even, we have

|J∗(K0)− J∗(K1)| ≤ n, . . . , |J∗(Km−1)− J∗(Km)| ≤ n,



and hence
|J∗(K)− J∗(K

′)| ≤ mn = dv[n]o(K,K ′) · n. (1)

When n is odd, note that the number of the chords with odd indices among the n

chords is at most n−1 since the sum of the indices of the n chords is 0. Thus, we have

|J∗(K0)− J∗(K1)| ≤ n− 1, . . . , |J∗(Km−1)− J∗(Km)| ≤ n− 1,

and hence

|J∗(K)− J∗(K
′)| ≤ m(n− 1) = dv[n]o(K,K ′) · (n− 1). (2)

The equalities (1) and (2) imply the desired result.

Figure 5:

(2) The inequality follows from (1) together with the fact that J∗(O) = 0, where O is the
trivial knot.

3. Proof of Theorem 1.5

In the following, we will construct a family of infinitely many virtual knots Ks with
uv[n](Ks) = m.

Let n ≥ 3 and m ≥ 1 be integers, and s be a positive odd integer. We consider the virtual
knot diagram Ks and its Gauss diagram as shown in Figure 6 and Figure 7, respectively. (The
Gauss diagram of Ks is shown in Figure 7 when m=2. In this Gauss diagram, the signs of
chords are all +1, and the numbers inside the circle indicate indices of chords.) The contents
of the box with (∗) will have a different shape depending on whether n is odd or even.
When n is odd, this diagram have nm+ s+ n−1

2
real crossings a1,1, . . . , am,n, b1, . . . , bs and

c1, . . . , cn−1
2

. When n is even, this diagram have nm+ s+ n−2
2

real crossings a1,1, . . . , am,n,
b1, . . . , bs and c1, . . . , cn−2

2
.

Figure 8 and Figure 9 are examples of Ks in the case of m = 3, n = 4 and m = 3, n = 5,
respectively.

Then we prove that the family {Ks}s∈N satisfies the following.

Claim 1. uv[n](Ks) ≤ m.

Claim 2. uv[n](Ks) ≥ m.

Claim 3. Ks ̸= Ks′ if and only if s ̸= s′.



Figure 6:

Figure 7: Gauss diagrams of Ks (when m=2)



Figure 8:

Figure 9:



Proof of Claim 1. The virtual knot Ks can be deformed into the trivial knot after m times
of v[n]-moves are applied. Figure 10 illustrates how this can be accomplished when n = 3.
The cases when n ≥ 4 can be treated similarly, where the last part of Figure 10 is replaced
by Figure 11 or Figure 12 according to whether n is odd or even.

Figure 10:

Proof of Claim 2. When n is odd, we can see that

J1(Ks) =
n− 1

2
m, J−1(Ks) =

n− 3

2
m, Js(Ks) = m, J−s−1(Ks) = m,

Jk(Ks) = 0 if k ̸= 1,−1, s,−s− 1, 0,
(3)



Figure 11:

Figure 12:

and hence the odd writhe of Ks is

J(Ks) =
n− 1

2
m+

n− 3

2
m+m = (n− 1)m.

Hence we have uv[n](Ks) ≥ 1
n−1

· (n− 1)m = m by Proposition 2.7.

When n is even, we can see that

J1(Ks) =
n− 2

2
m, J−1(Ks) =

n− 2

2
m, Js(Ks) = m, J−s(Ks) = m,

Jk(Ks) = 0 if k ̸= 1,−1, s,−s, 0,
(4)

and hence the odd writhe of Ks is

J(Ks) =
n− 2

2
m+

n− 2

2
m+m+m = nm.

Hence we have uv[n](Ks) ≥ 1
n
· nm = m by Proposition 2.7.

Proof of Claim 3. By the equalities (3), (4) and Lemma 2.6, we have the conclusion.

4. Remark

In the talk in the conference, we gave a lower bound for dv[n](K,K ′) in terms of “non-
zero” writhe. However, we realized that we need to be careful with orientation. Proposi-
tion 2.7 in this article is a corrected version.

In the following, we introduce an oriented version of virtualized n-gon move, which is
related with non-zero writhe. This is called an oriented virtualized n-gon move (or a v[n]o-
move) and is a local deformation on an oriented virtual link diagram as shown in Figure 13.
We denote it by v[n]o in figures. This move is a generalization of v∆o-move defined in [3].



Figure 13:

The non-zero writhe J∗(K) is defined by

J∗(K) :=
∑
k ̸=0

Jk(K).

Proposition 4.1. Let K and K ′ be oriented virtual knots. Then we have the following.

(1) dv[n]o(K,K ′) ≥ 1

n
|J∗(K)− J∗(K

′)|.

(2) uv[n]o(K) ≥ 1

n
|J∗(K)|.

Proof. This can be proved by arguments similar to the proof of Proposition 4.1. Note that
it can be easily seen that the indices and signs of any other chords are preserved by the
v[n]o-move (see Figure 14, which shows the change of Gauss diagram corresponding to a
v[n]o-move).

Figure 14:

Then, for the oriented virtual knot Ks constructed in the previous section, we can see that
uv[n]o(Ks) = m, where uv[n]o(Ks) is the minimal number of v[n]o-moves needed to deform
Ks into the trivial knot. The proof is similar to that for Proposition 2.7, where we can use
Proposition 4.1 to show uv[n]o(Ks) ≥ m. We remark that s can also be an even number in
the oriented case.
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