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Abstract. We propose a definition of the rotation number for a transverse graph
diagram. Then we define a multivariable Alexander polynomial for a framed transverse
graph (a.k.a ribbon graph). This report is based on a joint work with Zhongtao Wu.

1. The rotation number of a transverse graph diagram

1.1. A transverse graph. We consider an oriented connected graph G in S3 where for
each vertex v, there is a disk that separates the incoming and outgoing edges. We call
such an orientation a transverse orientation. A graph with a transverse orientation is
called a transverse graph. To our knowledge, the terminology was first used by [2] in
their definition of Heegaard Floer homology for graphs.

Lv
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......

Figure 1. The local picture of a vertex with transverse orientation (left).
An oriented trivalent graph without sinks and sources is a transverse graph
(right).

Now a diagram D of a transverse graph G on R2 is a regular projection of G so that

(i) The self-intersections are double points between edges, and at each double point
the information of which strand is over and which is under is given.

(ii) Around each vertex v, there is a straight line Lv that separates the edges entering
v and the edges leaving v.

If the position of the straight line Lv is clear, it can be omitted in the graph diagram.

Theorem 1.1. Two diagrams represent the same transverse graph if and only if they
can transfer to each other by a finite sequence of moves in Fig. 2.

For a transverse graph G, let S3\G denote the complement of G in S3. In this

report, we consider a transverse graph G for which the meridian of each

edge of G represents a non-trivial element in H1(S
3\G;Z).
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Figure 2. Reidemeister moves for transverse graph diagrams. Sup-
pressed orientations of the edges can be added in all compatible ways.

1.2. Definition of the rotation number for a graph diagram. For a smooth closed
oriented plane curve, the rotation number [10] or Whitney index counts the total number
of turns when traveling along the curve. Among many studies, there is a formula which
calculates it using information of the regions and the double points of the plane curve.
See Theorem 1.3. This formula seems to have been first proposed by Viro [5], and is
recently reproved by Wesenberg [9]. Motivated by this formula, we propose a definition
of the rotation number for a diagram of a transverse graph.

Let G be a transverse graph in S3. The first homology group H1(S
3\G;Z) has a

presentation as follows.

(i) generators To each edge or loop e of G, we assign a generator, which is the
homology class of the oriented meridian of e. We call this element the color of
e.

(ii) relators For any two generators s and t we have a relator ts = st. To each
vertex v of G, we assign a relator as follows. Suppose the generators corre-
sponding to the incoming (resp. outgoing) edges of v are s1, s2, · · · , sk (resp.
t1, t2, · · · , tl). Then we have a relator s1s2 · · · sk = t1t2 · · · tl.

Consider a connected diagram D of a transverse graph. To each connected component
r of R2\D, which we call a regular region, we define the color c(r) as follows:

(i) The color of the unique unbounded region is set to be 1 ∈ H1(S
3\G;Z).
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(ii) The colors of the other regions are inductively determined by the rule as exhib-
ited below: when an edge e points upward and its right-hand side region has
color x ∈ H1(S

3\G;Z), then the color of its left-hand side region is x ·me, where
me is the homology class of the meridian of e.

e

xx ·me

Figure 3. The colors of the two regions adjacent to an edge.

For each vertex v of D, we define its color c(v) as follows. Suppose the incoming (resp.
outgoing) edges around v are s1, s2, · · · , sk (resp. t1, t2, · · · , tl), as illustrated in Fig4.
Then let xi (resp. yj) be the color of the region adjacent to si and si+1 (resp. tj and
tj+1) for 1 ≤ i ≤ k − 1 (resp. 1 ≤ j ≤ l − 1). If k = 1 or l = 1, there is no xi or yj to
define. Let

c(v) =

k−1
∏

i=1

x
1/2
i

l−1
∏

j=1

y
1/2
i .

Namely we consider all the regions around v except the two which encounter Lv.

s1s2

tl

sk

t1 t2

......

......

Figure 4. A vertex.

For each double point v of D, we regard it as a vertex with indegree 2 and outdegree
2, and define its color as above. Namely

c(v) = x1/2y1/2,

where x is the color of its south corner and y is the color of its north corner.

Lemma 1.2. Let V be the set of vertices of D, and X(D) be the set of double points of

D. After taking the product,
∏

v∈V ∪X(D)

c(v) becomes an element of H1(S
3\G;Z).

Proof. Omitted. �

Theorem 1.3 (Viro, Wesenberg). Let D be an oriented plane curve on R2. Then the
rotation number w(D) of D can be calculated as

tw(D) =
∏

r

c(r)[
∏

v

c(v)]−1,
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Figure 5. A diagram of a trivalent graph.

where r runs through all the component of R2\D and v runs through all double points of
D.

Now we extend the formula above to a transverse graph diagram.

Definition 1.4. Let D be a connected diagram of a transverse graph. We define the
rotation number of D to be

Rot(D) =
∏

r∈F (D)

c(r)[
∏

v∈V ∪X(D)

c(v)]−1,

where F (D) is the set of regular regions of D. For a disconnected diagram, its rotation
number is defined to be the product of those of its connected components.

Example 1.5. The rotation number of the diagram D if Fig 5 is calculated as follows.
A word with underline indicates the color of the corresponding region. There are four

regular regions, two vertices and one crossing. We have
∏

r∈F (D)

c(r) = t ·s−1 ·ts−1 = t2s−2,

and
∏

v∈V ∪X(D)

c(v)2 = (ts−1)(ts−1) = t2s−2. As a result,

Rot(D) = t2s−2(ts−1)−1 = ts−1.

1.3. Properties. We discuss some properties of Rot(D).

Proposition 1.6. Under the given colors, we have the following relations.

(i) Rot
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(ii) Rot















tlt1 t2

t1t2 · · · tl

......















= Rot

















tlt1 t2

t1t2 · · · tl

......

















(iii) Rot















s1s2 sk

s1s2 · · · sk

......















= Rot















s1s2 sk

s1s2 · · · sk

......















(iv) Rot









t

t

ts s









= s−1 Rot









t









,Rot









t

t

tss









= s Rot









t









.

(v) Rot















ts

ts

t s















= Rot






ts







(vi) Rot

















t s

t s

ts

















= Rot











t s










(vii) Rot

















tr−1 sr

t s

r

















= Rot

















tr−1 sr

t s

r−1

















= Rot

















tr−1sr

t s

















Proof. Obvious from the definition. �

Proposition 1.7. The rotation number of a diagram does not change under moves II∼V
in Fig. 2 and its change under move I is as follows.
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Proof. Omitted. �
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Remark 1.8. Two graph diagrams are called regularly homotopic if they are connected
by a finite sequence of moves of II, III and IV. Prop. 1.7 tells us that the rotation number
Rot(D) is a regular homotopy invariant for a transverse graph. Nikkuni [3] showed that
the Wu invariant [8, 7] is a complete regular homotopy invariant for graphs. We expect
to clarify the relationship between Wu invariant and Rot(D) in a near future.

2. A multi-variable Alexander polynomial

2.1. Kauffman state. We recall the definition of Kauffman state that we introduced
in [1, Definition 2.4]. Suppose D is a connected diagram of a transverse graph. We can
obtain a decorated diagram (D, δ) by putting a base point δ on an edge of D and drawing
a circle around each vertex of D. Then we define

(i) Cr(D): denotes the set of crossings, including the types ��✒■ and ❅❅■✒ which are

the double points of the diagram and the type
❤

✻
which are the intersection

points around each vertex between the incoming edges with the circle.

(ii) Re(D): denotes the set of regions, including the regular regions of R2 sepa-
rated by D and the circle regions around the vertices. Marked regions are the
regions adjacent to the base point δ, and the others are called unmarked regions.

(iii) Corners: For a crossing of type ��✒■ or ❅❅■✒ , there are four corners around it, and
we call them the north, south, west, and east corners of the crossing. Around a

crossing of type
❤

✻
there are three corners, and we call the one inside the circle

region the north corner, the one on the left of the crossing the west corner and
the one on the right the east corner. Note also that every corner belongs to a
unique region in Re(D).

i
N

S
EW

W E

N

Fig 6 is an example of decorated diagram. Note that each meridian is nontrivial,
there are exactly two regions Ru and Rv adjacent to δ. Under the assumption that D is
connected, we have |Re(D)| = |Cr(D)|+ 2. A Kauffman state, or simply, a state for a
decorated diagram (D, δ) is a bijective map

s : Cr(D)→ Re(D)\{Ru, Rv},

which sends a crossing in Cr(D) to one of its corners. Let S(D, δ) denote the set of all
states.
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∗ δ

⋆⋆ •

•

•

•

Figure 6. There are four regular regions, two circle regions, one crossing

of type ❅❅■✒ , three crossings of type ❤

✻
. A Kauffman state associated to

(D, δ) is marked out by •’s .

2.2. Kauffman state sum. The aim here is to define a value 〈D〉, which is the multi-
variable version of the Kauffman state sum that we defined in [1].

Definition 2.1. Suppose δ is on an edge with color t, and the colors of the marked
regions are x and xt respectively. Define

|δ| = x− xt.

Note that all edges have non-trivial colors, we have |δ| 6= 0 ∈ ZH1(S
3\G;Z).

Definition 2.2. Choose a base point δ on an edge. Suppose (D, δ) is a connected deco-
rated diagram withN crossings C1, C2, · · · , CN in Cr(D) andN+2 regionsR1, R2, · · · , RN+2

in Re(D).

(i) Define the local contributions M△

Cp
and A

△

Cp
associated to each corner △ around

the crossing Cp as in Fig. 7.

−1

1
11

−1

1
11

1 1

1

t
t−1

1
1t−1

t
t

1
t1

t−1/2 t1/2

t−1/2 − t1/2

t

Figure 7. The local contributions M△

Cp
(top) and A

△

Cp
(bottom). Here t

indicates the color of the nearby edge.

(ii) For each state s ∈ S(D, δ), let

M(s) :=

N
∏

p=1

M
s(Cp)
Cp

,
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A(s) :=

N
∏

p=1

A
s(Cp)
Cp

.

(iii) The state sum is defined as

(1) 〈D〉 := |δ|−1
∑

s∈S(D,δ)

M(s) · A(s).

For all the cases that S(D, δ) = ∅ or D is disconnected, we let 〈D〉 = 0.

For an MOY graph (G, c), there is a homormorphism φc : H1(S
3\G)→ Z that assigns

the oriented meridian of an edge e to c(e). The state sum 〈D, c〉 defined in [1, Definition
2.11] can be obtained from 〈D〉 by replacing each element in H1(S

3\G) with its image
under φc. In particular 〈D, c〉 6= 0 implies that 〈D〉 6= 0.

Proposition 2.3. The state sum 〈D〉 does not depend on the choice of the base point δ.

Proof. Omitted. �

Proposition 2.4. The state sum 〈D〉 is invariant under the Reidemeister moves (II) –
(V) in Fig. 2, and its variations under Reidemeister move (I) are given as below.

t

〈 t 〉

=

〈 t 〉

=

〈 t 〉

= t−1

〈 t 〉

=

〈 t 〉

.

Proof. Omitted. �

2.3. A multi-variable Alexander polynomial. In this part, we present a way of
normalizing the state sum so that it becomes an invariant for framed transverse graphs.
This work is a generalization of [1, Section 3.2].

Let G be a transverse graph. Recall that a framing of G is an embedded compact
surface F ⊂ S3 in which G is sitting as a deformation retract. A framed graph is a graph
equipped with a framing. More precisely, each vertex of G is replaced by a disk in F

where the vertex is the center of the disk, and each edge of G is replaced by a strip
[0, 1] × [0, 1] where [0, 1] × {0, 1} is attached to the boundaries of its adjacent vertex
disks and the edge is {1

2
} × [0, 1]. It is obvious to see that a framed transverse graph

is equivalent with a ribbon graph defined in [4], where a vertex is replaced by a coupon
while an edge is replaced by an annulus.

Each graph diagram of G in R2 has a blackboard framing, whose projection in R2 is the
tubular neighborhood of the graph diagram in R2. Hereafter, a framed transverse graph
will be represented by graph diagrams with blackboard framing. For framed transverse
graphs, we have the following result.

Lemma 2.5. Any two graph diagrams for a framed transverse graph can be connected
by a sequence of Reidemeister moves in Fig. 8.

Starting from a framed graph diagram, we hope to construct an appropriate factor that
cancels the change of the state sum coming from Reidemeister move (I) in Proposition
2.4 while keeping invariant under the other types of Reidemeister moves.
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Figure 8. Reidemeister moves for framed transverse graph diagrams (rib-
bon graphs).

From now on, we use the blackboard-bold letters G and D to denote a framed trivalent
graph and diagram, respectively.

Definition 2.6. For a framed transverse graph diagram D, define the normalized Alexan-
der polynomial by

(2) ∆D := Rot(D)1/2 · 〈D〉.

Theorem 2.7. ∆D is a topological invariant of the framed transverse graph G.

Proof. Since both 〈D〉 and Rot(D) are invariant under Reidemeister moves (II, III, IV ),
it is enough to study their behavior under move (I ′). Suppose the graph on the left hand
side of (I ′) is D1 and the right one is D2. Then by proposition 2.4 〈D1〉 = t−1〈D2〉, where t
is the color of the corresponding edge. By Proposition 1.7 we have Rot(D1) = t2Rot(D2).
Therefore ∆D1

= ∆D2
under move (I ′). �

3. Future studies

There are several questions whose answers remain open to us.

(i) For a graph diagram D of a transverse graph, what is the relation of Rot(D)
and Wu invariant?

(ii) Is Rot(D) a complete regular homotopy invariant for transverse graphs?
(iii) For a framed trivalent graph without sink or source, what is the relation of ∆D

and Viro’s gl(1|1)-Alexander polynomial defined in [6]?
(iv) How to extend the definition of Rot(D) or even ∆D to a graph with sources/sinks?
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