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Definition [Henrique-Kaminitzer]

For n ∈ Z≥2, the cactus group Jn of degree n is defined by the
following presentation.
Generators: sp,q with 1 ≤ p < q ≤ n
Relations:

▶ s2p,q = e

▶ sp,qsm,r = sm,rsp,q ([p, q] ∩ [m, r] = ∅)

▶ sp,qsm,r = sp+q−r,p+q−msp,q ([m, r] ⊂ [p, q])

Here, [p, q] denotes the set {p, p+ 1, . . . , q − 1, q} of integers for
positive integers p, q with p < q.
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s14 s24s12 s34

= =
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We can consider the natural surjection π from Jn to the symmetric
group Sn of degree n.

Definition

The pure cactus group PJn of degree n is defined by the kernel of
the natural surjection π.

Known facts

▶ PJ4 ∼= π1(M0
5
(R)) [Henriques-Kamnitzer, 2006]

▶ PJ4 ∼= π1

(
5
#RP2

)
∼=< α1, α2, α3, α4, α5 | α2

1α
2
2α

2
3α

2
4α

2
5 >

[Cf. Genevois, 2022] (without direct proof)

▶ PJ4 ∼=< α, β, γ, δ, ϵ | αγϵβϵα−1δ−1βγδ−1 >
[Bellingeri-Chemin-Lebed, 2022] (by Reidemeister-Schreier
method.)
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Theorem [Hama-Ichihara]

PJ4 has the following presentation.〈
g1, · · · , g10

∣∣∣∣∣∣
g1g

−1
10 g

−1
2 , g9g

−1
5 g4, g5g1g

−1
6 ,

g8g10g
−1
7 , g8g

−1
3 g4,

g2g9g
−1
7 g6g

−1
3

〉
This presentation is transformed to the next one.
⟨g2, g4, g8, g9, g10 | g2g9g−1

10 g
−1
8 g4g9g2g10g

−1
8 g−1

4 ⟩

Cororally

The above presentation is equivalent to

< α1, α2, α3, α4, α5 | α2
1α

2
2α

2
3α

2
4α

2
5 >

∼= π1(
5
#RP2).

Remark [Bellingeri-Chemin-Lebed, 2022]

The above presentation is also equivalent to
< α, β, γ, δ, ϵ | αγϵβϵα−1δ−1βγδ−1 >.
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Poincaré’s polygon theorem [Cf. Maskit, 1971]

Let D be a polygon with side-identifications on H2. Let G be the
group generated by the side-identifications. Then G is
discontinuous, D is a fundamental polygon for the action G ↷ H2,
and the cycle relations form the complete set of relations for G.

Sketch of proof

▶ Find the fundamental polygon as D w.r.t.

PJ4 ↷ C
{2,3}
4

∼= H2

▶ Applying Poincaré’s polygon theorem.
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Cf. [Genevois 2022]

J
{2,3}
4 =

〈
s12, s23, s34, s13, s24

∣∣∣∣∣∣
s2ij = e, s13s12 = s23s13,

s24s23 = s34s24,
s12s34 = s34s12

〉
C

{2,3}
4 denotes the Cayley complex of J

{2,3}
4 .

Fact [Genevois, 2022]

The map Γ induced from Γ0 defined by the following implies an
action of PJ4 on C4

{2,3}

Γ0 : PJ4 ×
(
C4

{2,3}
)(0)

−→
(
C4

{2,3}
)(0)

(g, h) 7−→

{
gh gh ∈ J

{2,3}
4

ghs14 gh /∈ J
{2,3}
4 ,

and so, Γ acts on C4
{2,3} freely and cocompactly.
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C
{2,3}
4

s2ij = e

s13s12 = s23s13
s24s23 = s34s24
s12s34 = s34s12

s13s34 s13s24

s13s12 s13 s13s23
s23s12 s12s23

s23s34 s12s24
s23 e s12

s23s24 s24 s34 s34s12
s24s12 s24s23 s34s13

s24s13 s34s23

[Fact]

C
{2,3}
4 is isometric to H2

up to scaling.

Figure: Caption
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Outline of proof rs13s24s13s24 ∈ PJ4

s13s34 s13s24

s13s12 s13 s13s23
s23s12 s12s23

s23s34 s12s24
s23 e s12

s23s24 s24 s34 s34s12
s24s12 s24s23 s34s13

s24s13 s34s23

s13s24s23

s23s34s12 s12s24s34

s24s13s23 s24s13s12
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s13s34 s13s24

s13s12 s13 s13s23
s23s12 s12s23

s23s34 s12s24
s23 e s12

s23s24 s24 s34 s34s12
s24s12 s24s23 s34s13

s24s13 s34s23

s13s24s23

s23s34s12 s12s24s34

s24s13s23 s24s13s12

rs13s24s13s24 ∈ PJ4

g2

?

We obtain a generator:

g2

Generators:

g1, g2, g3, g4, g5,

g6, g7, g8, g9, g10
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s13s34 r
s13s24

s13s12 s13 s13s23
s23s12 s12s23

s23s34 s12s24
s23 e s12

s23s24 s24 s34 s34s12
s24s12 s24s23 s34s13

g3
g−1
4

g−1
8

s24s13 s34s23

s13s24s23

s23s34s12 s12s24s34

s24s13s23 s24s13s12

We obtain a cycle relation:

g3g
−1
8 g−1

4

?

Complete set of relations:

g3g
−1
8 g−1

4 ,

g5g
−1
9 g−1

4 ,

g5g1g
−1
6 ,

g8g10g
−1
7 ,

g10g
−1
1 g2,

g3g
−1
6 g7g

−1
9 g−1

2
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Explicit isomorphism

The following map is isomorphism.

f : ⟨α1, α2, α3, α4, α5|α2
1α

2
2α

2
3α

2
4α

2
5⟩

−→

〈
g1, · · · , g10

∣∣∣∣∣∣
g1g

−1
10 g

−1
2 , g9g

−1
5 g4, g5g1g

−1
6 ,

g8g10g
−1
7 , g8g

−1
3 g4,

g2g9g
−1
7 g6g

−1
3

〉
α1 7−→ g−1

1 = g−1
10 g

−1
2

α2 7−→ g2g10g
−1
5 g8g

−1
3 = g2g10g

−1
9 g−2

4

α3 7−→ g4
α4 7−→ g9g

−1
10

α5 7−→ g−1
8 g6 = g−1

8 g4g9g2g10
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α2
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Thank you
for your attention.
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