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Preliminaries
@00

Definition [Henrique-Kaminitzer]

For n € Z>3, the cactus group J,, of degree n is defined by the
following presentation.

Generators: s, 4 with 1 <p <g<n

Relations:

> 52 —
Spvq @

> Sp,qs"lﬂ" = Sm’rsp’q ([p7 q] m [m’ 7"] = @)

> SpgSmyr = Sprq—rp+q—mSpq ([m,7] C [P, q])
Here, [p, ¢] denotes the set {p,p+1,...,q — 1,q} of integers for
positive integers p, q with p < gq.
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Preliminaries
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We can consider the natural surjection 7w from J, to the symmetric
group Sy, of degree n.

Definition

The pure cactus group P.J, of degree n is defined by the kernel of
the natural surjection 7.

> PJy = wl(MB(R)) [Henriques-Kamnitzer, 2006]

> PJy=2m <#RP2> >, g, a3, 4, a5 | A2030305032 >
[Cf. Genevois, 2022] (without direct proof)

> PJ, &< a,B,7,0,¢| ayeBea 67 18y67t >
[Bellingeri-Chemin-Lebed, 2022] (by Reidemeister-Schreier
method.)
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Results
°

Theorem [Hama-Ichihara]

PJy has the following presentation.
9191‘01951 g 9995 '94, 959196 5
<91,"' » 910 989109_71 ,98_913 94, >
929997 9693
This presentation is transformed to the next one.
(92, 94, 98, 99, 910 | 9299910 95 ' 94999291095 ' 95"

Cororally

The above presentation is equivalent to

5
DA AT 2
< aq, 09,03, 04,05 | ajasozaqat > m (#RP).

Remark [Bellingeri-Chemin-Lebed, 2022]

The above presentation is also equivalent to
< a,B,7,0,¢| ayeBea 671 pysL >,
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Proof
#0000C

Poincaré’s polygon theorem [Cf. Maskit, 1971]

Let D be a polygon with side-identifications on H?. Let G be the
group generated by the side-identifications. Then G is
discontinuous, D is a fundamental polygon for the action G ~ H?,
and the cycle relations form the complete set of relations for G.
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Proof
#0000C

Poincaré’s polygon theorem [Cf. Maskit, 1971]

Let D be a polygon with side-identifications on H?. Let G be the
group generated by the side-identifications. Then G is
discontinuous, D is a fundamental polygon for the action G ~ H?,
and the cycle relations form the complete set of relations for G.

Sketch of proof

» Find the fundamental polygon as D w.r.t.
PJy ~ CP% = 2
» Applying Poincaré's polygon theorem.
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Proof
[o] Jelelele

Cf. [Genevois 2022]

2 _ —
(2.3} Sij = €, 513512 = 523513,
Jy 77 = ( S12, 823, 534, 513, S24 | S24523 = S34S24,
512834 = 534512

021{2’3} denotes the Cayley complex of Jf’?’}.

Fact [Genevois, 2022]

The map I' induced from I'y defined by the following implies an
action of P.Jy on C,{23}

Iy: PJy X <C4{2,3}>(0) . <C4{273})(0)

R
& ghsiy gh & J2%,

and so, T acts on C,;{>3} freely and cocompactly.
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Explicit isomorphism

The following map is isomorphism.

[ {ar, az, a3, ay, ada%a%a%aia@
91970 95 '+ 9995 ' 94, 959195

— <gl, -, g10| 9891097 ", 9895 *94, >
929997 9695 "

ar— g7 =910 95

a2 — 291095 9895 = 9291099 91

Q3 — g4

oy — gggﬂ)l

a5 — g5 ' 96 = 95 949992910
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Thank you
for your attention.
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