A presentation of the pure cactus group of degree four

Takatoshi Hama

Nihon University Graduate School of Integrated Basic Sciences

Joint work with Kazuhiro Ichihara (Nihon University) Mathematical Science of Knots VII, December 25 , 2024, Waseda University

Definition [Henrique-Kaminitzer]

For $n \in \mathbb{Z}_{\geq 2}$, the cactus group J_n of degree n is defined by the following presentation. Generators: $s_{p,q}$ with $1 \leq p < q \leq n$ Relations:

Preliminaries D●O		Results o	Proof 00000
s_{14}		$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
$\left \right _{s_{12}^2}$	= e		$= \left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Prel	limi	nai	ries
000			

We can consider the natural surjection π from J_n to the symmetric group S_n of degree n.

Definition

The pure cactus group PJ_n of degree n is defined by the kernel of the natural surjection π .

Known facts

- ▶ $PJ_4 \cong \pi_1(\overline{M_0}^5(\mathbb{R}))$ [Henriques-Kamnitzer, 2006]
- $\blacktriangleright PJ_4 \cong \pi_1 \left(\overset{5}{\#} \mathbb{RP}^2 \right) \cong <\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \mid \alpha_1^2 \alpha_2^2 \alpha_3^2 \alpha_4^2 \alpha_5^2 >$

[Cf. Genevois, 2022] (without direct proof)

► $PJ_4 \cong < \alpha, \beta, \gamma, \delta, \epsilon \mid \alpha \gamma \epsilon \beta \epsilon \alpha^{-1} \delta^{-1} \beta \gamma \delta^{-1} >$ [Bellingeri-Chemin-Lebed, 2022] (by Reidemeister-Schreier method.)

Theorem [Hama-Ichihara]

PJ_4 has the following presentation.

$$\left\langle g_{1}, \cdots, g_{10} \middle| \begin{array}{c} g_{1}g_{10}^{-1}g_{2}^{-1}, g_{9}g_{5}^{-1}g_{4}, g_{5}g_{1}g_{6}^{-1}, \\ g_{8}g_{10}g_{7}^{-1}, g_{8}g_{3}^{-1}g_{4}, \\ g_{2}g_{9}g_{7}^{-1}g_{6}g_{3}^{-1} \end{array} \right\rangle$$

This presentation is transformed to the next one

$$\langle g_2, g_4, g_8, g_9, g_{10} \mid g_2 g_9 g_{10}^{-1} g_8^{-1} g_4 g_9 g_2 g_{10} g_8^{-1} g_4^{-1} \rangle$$

Cororally

The above presentation is equivalent to

$$<\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5 \mid \alpha_1^2 \alpha_2^2 \alpha_3^2 \alpha_4^2 \alpha_5^2 > \cong \pi_1(\overset{\scriptscriptstyle o}{\#} \mathbb{RP}^2).$$

Remark [Bellingeri-Chemin-Lebed, 2022]

The above presentation is also equivalent to $< \alpha, \beta, \gamma, \delta, \epsilon \mid \alpha \gamma \epsilon \beta \epsilon \alpha^{-1} \delta^{-1} \beta \gamma \delta^{-1} >.$

Poincaré's polygon theorem [Cf. Maskit, 1971]

Let D be a polygon with side-identifications on \mathbb{H}^2 . Let G be the group generated by the side-identifications. Then G is discontinuous, D is a fundamental polygon for the action $G \curvearrowright \mathbb{H}^2$, and the cycle relations form the complete set of relations for G.

Poincaré's polygon theorem [Cf. Maskit, 1971]

Let D be a polygon with side-identifications on \mathbb{H}^2 . Let G be the group generated by the side-identifications. Then G is discontinuous, D is a fundamental polygon for the action $G \curvearrowright \mathbb{H}^2$, and the cycle relations form the complete set of relations for G.

Sketch of proof

- Find the fundamental polygon as D w.r.t. $PJ_4 \curvearrowright C_4^{\{2,3\}} \cong \mathbb{H}^2$
- Applying Poincaré's polygon theorem.

Cf. [Genevois 2022]

$$\begin{split} J_4^{\{2,3\}} = \left\langle s_{12}, s_{23}, s_{34}, s_{13}, s_{24} \right| & \begin{array}{c} s_{ij}^2 = e, s_{13}s_{12} = s_{23}s_{13}, \\ s_{24}s_{23} = s_{34}s_{24}, \\ s_{12}s_{34} = s_{34}s_{12} \\ C_4^{\{2,3\}} & \text{denotes the Cayley complex of } J_4^{\{2,3\}}. \end{split}$$

Fact [Genevois, 2022]

The map Γ induced from Γ_0 defined by the following implies an action of PJ_4 on $C_4^{\{2,3\}}$

$$\begin{split} \Gamma_0: PJ_4 \times \left(C_4^{\{2,3\}}\right)^{(0)} &\longrightarrow \left(C_4^{\{2,3\}}\right)^{(0)} \\ (g,h) &\longmapsto \begin{cases} gh & gh \in J_4^{\{2,3\}} \\ ghs_{14} & gh \notin J_4^{\{2,3\}} \end{cases} \end{split}$$

and so, Γ acts on ${C_4}^{\{2,3\}}$ freely and cocompactly.

Preliminaries	Results
000	O

Pre		
000		

Result

10/16

Prel		ina		
000				

Result 0

Explicit isomorphism

The following map is isomorphism.

$$\begin{split} f: &\langle \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 | \alpha_1^2 \alpha_2^2 \alpha_3^2 \alpha_4^2 \alpha_5^2 \rangle \\ &\longrightarrow & \left\langle g_1, \cdots, g_{10} \right| \begin{array}{c} g_1 g_{10}^{-1} g_2^{-1}, g_9 g_5^{-1} g_4, g_5 g_1 g_6^{-1}, \\ g_8 g_{10} g_7^{-1}, g_8 g_3^{-1} g_4, \\ g_2 g_9 g_7^{-1} g_6 g_3^{-1} \\ \alpha_1 \longmapsto g_1^{-1} &= g_{10}^{-1} g_2^{-1} \\ \alpha_2 \longmapsto g_2 g_{10} g_5^{-1} g_8 g_3^{-1} &= g_2 g_{10} g_9^{-1} g_4^{-2} \\ \alpha_3 \longmapsto g_4 \\ \alpha_4 \longmapsto g_9 g_{10}^{-1} \\ \alpha_5 \longmapsto g_8^{-1} g_6 &= g_8^{-1} g_4 g_9 g_2 g_{10} \\ \end{split}$$

Thank you for your attention.