Gap between the alternation number and the dealternating number

María de los Angeles Guevara Hernández Osaka City University Advanced Mathematical Institute

(CONACYT-Mexico fellow)

guevarahernandez.angeles@gmail.com

研究集会「結び目の数理」

Waseda University, Japan December 25, 2018

Introduction

Definition

A link is a disjoint union of circles embedded in S^3 , a knot is a link with one component.

Introduction

Definition

A knot that possesses an alternating diagram is called an **alternating knot**, otherwise it is called a non-alternating knot.

Alternating diagram

Non-alternating diagram

Introduction

Definition

A knot that possesses an alternating diagram is called an **alternating knot**, otherwise it is called a non-alternating knot.

Alternating diagram

Non-alternating diagram

In 2015 Greene and Howie,independently, gave a characterization of alternating links.

Definition (Adams et al., 1992)

The dealternating number of a link diagram D is the minimum number of crossing changes necessary to transform D into an alternating diagram. The dealternating number of a link L, denoted dalt(L), is the minimum dealternating number of any diagram of L.

A link with dealternating number k is also called k-almost alternating. We say that a link is almost alternating if it is 1-almost alternating.

Definition (Kawauchi, 2010)

The alternation number of a link diagram D is the minimum number of crossing changes necessary to transform D into some (possibly non-alternating) diagram of an alternating link.

The alternation number of a link L denoted alt(L), is the minimum

The alternation number of a link L, denoted alt(L), is the minimum alternation number of any diagram of L.

$$dalt(L) = 2$$

$$alt(L) \leq dalt(L)$$

$$alt(L) = 1$$

$$dalt(L) = 2$$

$$alt(L) \leq dalt(L)$$

Adams et al. showed that an almost alternating knot is either a torus knot or a hyperbolic knot.

Turaev genus

To a link diagram D, Turaev associated a closed orientable surface embedded in S^3 , called the *Turaev surface*.

Definition (Turaev, 1987)

The Turaev genus, $g_T(L)$, of a link L is the minimal number of the genera of the Turaev surfaces of diagrams of L.

[Dasbach et al., 2008] $g_T(L) = 0$ if and only if L is alternating.

Khovanov homology [Khovanov, 2000]

Let $L \in S^3$ be an oriented link. The Khovanov homology of L, denoted Kh(L), is a bigraded \mathbb{Z} -module with homological grading i and polynomial (or Jones) grading j so that $Kh(L) = \bigoplus_{i,j} Kh^{i,j}(L)$.

j∖i	-4	-3	-2	-1	0	1	2
7							1
5							
3					1	1	
1				1	1		
-1				1	1		
-3		1	1				
-5							
- 7	1						

The coefficients of the monomials $t^i q^j$ are shown. j-2i=s+1 or j-2i=s-1, where s=2 is the signature of 9_{42} .

$w_{Kh}(K)$

$$\delta = j - 2i$$
 so that $Kh(L) = \bigoplus_{\delta} Kh^{\delta}(L)$.

Let δ_{min} be the minimum δ -grading where Kh(L) is nontrivial and δ_{max} be the maximum δ -grading where Kh(L) is nontrivial.

 $\mathit{Kh}(\mathit{L})$ is said to be $[\delta_{\mathit{min}}, \delta_{\mathit{max}}]$ -thick, and the Khovanov width of L is defined as

$$w_{Kh}(L) = \frac{1}{2}(\delta_{max} - \delta_{min}) + 1.$$

$$alt(K) \le dalt(K).$$
 (1)

$$g_T(K) \le dalt(K).$$
 (2)

$$w_{Kh}(K) - 2 \le g_T(K). \tag{3}$$

$$\widehat{w_{HF}(K)} - 1 \le g_T(K). \tag{4}$$

- (2) [Abe and Kishimoto, 2010];
- (3)[Champanerkar et al., 2007] and [Champanerkar and Kofman, 2009];
- (4)[M. Lowrance, 2008].

$$\frac{|\sigma(K) - s(K)|}{2} \le alt(K). \tag{5}$$

$$\frac{|\sigma(K) - s(K)|}{2} \le g_{\mathcal{T}}(K). \tag{6}$$

Skein relation

$$0 \le \sigma(K_+) - \sigma(K_-) \le 2. \tag{7}$$

$$0 \le s(K_+) - s(K_-) \le 2. \tag{8}$$

where $\sigma(K)$ and s(K) are the signature and Rasmussen s-invariant of a knot K, respectively, and both invariants are equal to 2 for the positive trefoil knot.

- (5) [Abe, 2009];
- (6)[Dasbach and Lowrance, 2011];
- (7) [Cochran and Lickorish, 1986];
- (8) [Rasmussen, 2010].

alt(K) and dalt(K)

[Abe and Kishimoto, 2010] Examples where the alternation number equals the dealternating number.

[Lowrance, 2015] For all $n \in \mathbb{N}$ there exists a knot K, which is the iteration of Whitehead doubles of eight figure-eight knot, such that alt(K) = 1 and $n \leq dalt(K)$.

[Guevara-Hernández, 2017] For all $n \in \mathbb{N}$ there exist a knot family \mathcal{DS}_n such that if $K \in \mathcal{DS}_n$ then alt(K) = 1 and dalt(K) = n.

$$N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^l\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot c)$$

$$N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^l\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot c)$$

$$N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^l\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot c)$$

$$N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^{l}\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot c)$$

$$N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^{l}\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot c)$$

$$N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^{l}\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot c)$$

$w_{Kh}(K) - 2 \leq dalt(K)$

Theorem (Khovanov, 2010)

There are long exact sequences

$$\cdots$$
 Kh^{i-e-1,j-3e-2}(D_h) \to Kh^{i,j}(D_+) \to Kh^{i,j-1}(D_v) \to Kh^{i-3,j-3e-2}(D_h) $\to \cdots$ and

$$\cdots \textit{Kh}^{i,j+1}(\textit{D}_{\textit{v}}) \rightarrow \textit{Kh}^{i,j}(\textit{D}_{-}) \rightarrow \textit{Kh}^{i-e+1,j-3e+2}(\textit{D}_{\textit{h}}) \rightarrow \textit{Kh}^{i+1,j+1}(\textit{D}_{\textit{v}}) \rightarrow \cdots$$

When only the $\delta = j - 2i$ grading is considered, the long exact sequence become

$$\cdots Kh^{\delta-e}(D_h) \xrightarrow{f_+^{\delta-e}} Kh^{\delta}(D_+) \xrightarrow{g_+^{\delta}} Kh^{\delta-1}(D_v) \xrightarrow{f_+^{\delta-1}} Kh^{\delta-e-2}(D_h) \rightarrow \cdots$$
and

$$\cdots \operatorname{\mathit{Kh}}^{\delta+1}(D_{v}) \xrightarrow{f_{-}^{\delta+1}} \operatorname{\mathit{Kh}}^{\delta}(D_{-}) \xrightarrow{g_{-}^{\delta}} \operatorname{\mathit{Kh}}^{\delta-e}(D_{h}) \xrightarrow{h_{-}^{\delta-e}} \operatorname{\mathit{Kh}}^{\delta-1}(D_{v}) \rightarrow \cdots$$

$$e = neg(D_h) - neg(D_+)$$

The crossings D_+, D_-, D_v, D_h , respectively.

$w_{Kh}(K)$

Corollary

Let D_+, D_-, D_v and D_h be as above. Suppose $Kh(D_v)$ is $[v_{min}, v_{max}]$ -thick and $Kh(D_h)$ is $[h_{min}, h_{max}]$ -thick. Then $Kh(D_+)$ is $[\delta_{min}^+, \delta_{max}^+]$ -thick, and $Kh(D_-)$ is $[\delta_{min}^-, \delta_{max}^-]$ -thick, where

$$\begin{split} \delta_{\min}^{+} &= \left\{ \begin{array}{ll} \min\{v_{\min}+1,h_{\min}+e\} & \text{if } v_{\min} \neq h_{\min}+e+1 \\ v_{\min}+1 & \text{if } v_{\min}=h_{\min}+e+1 \text{ and } h_{\perp}^{v_{\min}} \text{ is surjective} \\ v_{\min}-1 & \text{if } v_{\min}=h_{\min}+e+1 \text{ and } h_{\perp}^{v_{\min}} \text{ is not surjective,} \\ \end{array} \right. \\ \delta_{\max}^{+} &= \left\{ \begin{array}{ll} \max\{v_{\max}+1,h_{\max}+e\} & \text{if } v_{\max} \neq h_{\max}+e+1 \\ v_{\max}-1 & \text{if } v_{\max}=h_{\max}+e+1 \text{ and } h_{\perp}^{v_{\max}} \text{ is injective} \\ v_{\max}+1 & \text{if } v_{\max}=h_{\max}+e+1 \text{ and } h_{\perp}^{v_{\max}} \text{ is not injective,} \\ \end{array} \right. \\ \delta_{\min}^{-} &= \left\{ \begin{array}{ll} \min\{v_{\min}-1,h_{\min}+e\} & \text{if } v_{\min} \neq h_{\min}+e-1 \\ v_{\min}-1 & \text{if } v_{\min}=h_{\min}+e-1 \text{ and } h_{\perp}^{v_{\min}} \text{ is not surjective,} \\ v_{\min}-1 & \text{if } v_{\min}=h_{\min}+e-1 \text{ and } h_{\perp}^{v_{\min}} \text{ is not surjective,} \\ \delta_{\max}^{-} &= \left\{ \begin{array}{ll} \max\{v_{\max}-1,h_{\max}+e\} & \text{if } v_{\max} \neq h_{\max}+e-1 \\ v_{\max}-1 & \text{if } v_{\max}=h_{\max}+e-1 \text{ and } h_{\perp}^{v_{\max}} \text{ is injective} \\ v_{\max}+1 & \text{if } v_{\max}=h_{\max}+e-1 \text{ and } h_{\perp}^{v_{\max}} \text{ is not injective.} \end{array} \right. \end{aligned}$$

if $v_{max} = h_{max} + e - 1$ and $h_{-}^{v_{max}}$ is not injective.

Lemma (G.)

If
$$D = N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^I\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c)$$
, then $Kh(D)$ is $[4m+I+2,6m+2n+I+4]$ -thick. Hence, $w_{Kh}(D)=m+n+2$.

Proof. (outline)

Lemma (G.)

If
$$D = N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^I\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c)$$
, then $Kh(D)$ is $[4m+I+2,6m+2n+I+4]$ -thick. Hence, $w_{Kh}(D)=m+n+2$.

Proof. (outline)

Lemma (G.)

If
$$D = N((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^I\sigma_3^{-1}(\sigma_1\sigma_2)^{3n} \cdot c)$$
, then $Kh(D)$ is $[4m+I+2,6m+2n+I+4]$ -thick. Hence, $w_{Kh}(D)=m+n+2$.

Proof. (outline)

Lemma (G.)

Let D be the closure of the 3-braid $(\sigma_2\sigma_3)^{3k}\sigma_2^r\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}$ with $k, r, m \in \mathbb{N}$ and $k \geq 2$, then Kh(D) is [4(k+n)+r-3,6(k+n)+r-3]-thick.

Proof. Induction over n by using the braid $\sigma_2^r \sigma_3^{-1} (\sigma_2 \sigma_3)^{3k} (\sigma_1 \sigma_2)^{3n}$.

Lemma (G.)

Let D be the closure of the 3-braid $(\sigma_2\sigma_3)^{3k}\sigma_2^r\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}$ with $k, r, m \in \mathbb{N}$ and $k \geq 2$, then Kh(D) is [4(k+n)+r-3,6(k+n)+r-3]-thick.

Proof. Induction over n by using the braid $\sigma_2^r \sigma_3^{-1} (\sigma_2 \sigma_3)^{3k} (\sigma_1 \sigma_2)^{3n}$.

Proposition (Lowrance, 2009)

Let D be the closure of the braid $(\sigma_1\sigma_2)^{3k}\sigma_1^a\sigma_2^{-1}$ where a and k are positive integers. Then Kh(D) is [4k+a-2,6k+a-2]-thick.

 $\mathit{Kh}(D_v^*)$ is [4(m+n)+l+1,6(m+n)+l+3]-thick $\mathit{neg}(D_v) = 4n+1$ and $\mathit{neg}(D_v^*) = 1$ $\mathit{Kh}^\delta(D_v) \cong \mathit{Kh}^{\delta+s}(D_v^*)$. Therefore $\mathit{Kh}(D_v)$ is [4m+l+1,6m+l+3]-thick.

Note that $D_{h_{\nu}} = D_{\nu}^*$ and $Kh(D_{h_h})$ is [4m+l+2,6m+l+4]-thick. $neg(D_{h_h}) - neg(D_h) = 4n+1-1$. Then, $Kh(D_h)$ is [4(m+n)+l+2,6(m+n)+l+4]-thick.

$$e = neg(D_h) - neg(D_+) = -4n$$
, since $4m + l + 1 \neq (4(m+n) + l + 2) + e + 1$ and $6m + l + 3 \neq (6(m+n) + l + 4) + e + 1$
It implies that $Kh(D_+)$ is $[4m + l + 2, 6m + 2n + l + 4]$ -thick. Hence, $w_{Kh}(N(D)) = m + n + 2$.

Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$\mathcal{F}^{m,n}=\{\textit{N}((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^{\textit{I}}\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot\textit{c})\ |\textit{I}\in\mathbb{N},\textit{I} \ \textit{is odd}.\}$$

such that, if $K \in \mathcal{F}^{m,n}$ then $\mbox{dalt}(K) = m + n \ \ \mbox{and} \ \ m - 1 \leq \mbox{alt}(K) \leq m + 1.$

Proof.

Due to the previous lemma we have that

$$w_{Kh}(K)=m+n+2.$$

Beside,

$$w_{Kh}(K) - 2 \le g_T(K) \le dalt(K)$$
.

It follows that

$$m + n \leq dalt(K)$$
.

$$alt(K) \leq m + n$$

$alt(\overline{K}) \leq m + n$

$alt(\overline{K}) \leq m + n$

$alt(K) \leq m + n$

After m + n crossings changes we have an alternating diagram. Therefore, dalt(K) = m + n.

Alternation number

One crossing change.

Alternation number

One crossing change.

Alternation number

One crossing change.

One crossing change.

We obtain

$$(\sigma_1\sigma_2)^{3(m+1)}\sigma_1^I\sigma_2^{-1}$$

One crossing change.

We obtain

$$(\sigma_1\sigma_2)^{3(m+1)}\sigma_1^I\sigma_2^{-1}$$

which is conjugate to

$$(\sigma_1\sigma_2)^{3m}\sigma_1^{l+4}\sigma_2$$

Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and $r \geq 5$, we have that the closure of the 3-braid $(\sigma_1 \sigma_2)^{3m} \sigma_1^r \sigma_2$, denoted by $K_{m,r}$, has alternation number equal to m.

It was used the following inequality.

$$|\sigma(K_{m,r}) - s(K_{m,r})|/2 \le alt(K_{m,r}).$$
(9)

Theorem (Kanenobu, 2010)

For positive integers m, r with r odd and $r \geq 5$, we have that the closure of the 3-braid $(\sigma_1 \sigma_2)^{3m} \sigma_1^r \sigma_2$, denoted by $K_{m,r}$, has alternation number equal to m.

It was used the following inequality.

$$|\sigma(K_{m,r}) - s(K_{m,r})|/2 \le alt(K_{m,r}). \tag{9}$$

$$|\sigma(K_{m,r}) - s(K_{m,r})|/2 = alt(K_{m,r}).$$
 (10)

Then, $alt(K) \leq m+1$.

Skein relation

$$0 \le \sigma(D_+) - \sigma(D_-) \le 2. \tag{11}$$

$$0 \le s(D_+) - s(D_-) \le 2. \tag{12}$$

 D_+ is a diagram of K, $D_- = K_{m,r}$

$$m-1 \le |\sigma(K) - s(K)|/2 \le m+1.$$
 (13)

Then, alt(K) > m - 1.

Therefore.

$$m-1 \leq alt(K) \leq m+1$$
.

Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$\mathcal{F}^{m,n}=\{\textit{N}((\sigma_2\sigma_3)^{3(m+1)}\sigma_2^{\textit{I}}\sigma_3^{-1}(\sigma_1\sigma_2)^{3n}\cdot\textit{c})\ |\textit{I}\in\mathbb{N},\textit{I} \ \textit{is odd}.\}$$

such that, if
$$K \in \mathcal{F}^{m,n}$$
 then $dalt(K) = m + n$

$$dalt(K) = m + n$$
 and $m - 1 \le alt(K) \le m + 1$.

Theorem (G.)

For all pair m, n of positive integers there exists a family of knots

$$\mathcal{F}^{m,n} = \{ N((\sigma_2 \sigma_3)^{3(m+1)} \sigma_2^{l} \sigma_3^{-1} (\sigma_1 \sigma_2)^{3n} \cdot c) \mid l \in \mathbb{N}, l \text{ is odd.} \}$$

such that, if
$$K \in \mathcal{F}^{m,n}$$
 then
$$dalt(K) = m + n \quad and \quad m - 1 \leq alt(K) \leq m + 1.$$

Thank you for your attention