On the minimal coloring number of the minimal diagram of torus links

Eri Matsudo

Nihon University
Graduate School of Integrated Basic Sciences

Joint work with K. Ichihara (Nihon Univ.) & K. Ishikawa (RIMS, Kyoto Univ.)

Waseda University, December 24, 2018

\mathbb{Z} -coloring

Let L be a link, and D a diagram of L.

\mathbb{Z} -coloring

A map $\gamma:\{\mathrm{arcs}\ of\ D\} \to \mathbb{Z}$ is called a \mathbb{Z} -coloring on D if it satisfies the condition $2\gamma(a)=\gamma(b)+\gamma(c)$ at each crossing of D with the over arc a and the under arcs b and c.

A \mathbb{Z} -coloring which assigns the same color to all the arcs of the diagram is called a trivial \mathbb{Z} -coloring.

L is \mathbb{Z} -colorable if \exists a diagram of L with a non-trivial \mathbb{Z} -coloring.

Let L be a \mathbb{Z} -colorable link.

Minimal coloring number

- [1] For a diagram D of L, $\min \{\# \operatorname{Im}(\gamma) \mid \gamma : \operatorname{non-tri.} \mathbb{Z}\text{-coloring on } D\}$
- [2] $\operatorname{mincol}_{\mathbb{Z}}(L) := \min \{ \operatorname{mincol}_{\mathbb{Z}}(D) \mid D : a \text{ diagram of } L \}$

Simple \mathbb{Z} -coloring

 γ : a $\mathbb{Z}\text{-coloring}$ on a diagram D of a non-trivial $\mathbb{Z}\text{-colorable}$ link L If $\exists~d\in\mathbb{N}$ s.t. at each crossings in D, the differences between the colors of the over arcs and the under arcs are d or 0, then we call γ a simple $\mathbb{Z}\text{-coloring}.$

Simple \mathbb{Z} -coloring

 γ : a \mathbb{Z} -coloring on a diagram D of a non-trivial \mathbb{Z} -colorable link L If $\exists \ d \in \mathbb{N}$ s.t. at each crossings in D, the differences between the colors of the over arcs and the under arcs are d or 0, then we call γ a simple \mathbb{Z} -coloring.

Theorem 1 [Ichihara-M., JKTR, 2017]

Let L be a non-splittable \mathbb{Z} -colorable link. If there exists a simple \mathbb{Z} -coloring on a diagram of L, then $\mathrm{mincol}_{\mathbb{Z}}(L)=4$.

Theorem 2 [M., to apper JKTR, Zhang-Jin-Deng]

Any \mathbb{Z} -colorable link has a diagram admitting a simple \mathbb{Z} -coloring.

Theorem 2 [M., to apper JKTR, Zhang-Jin-Deng]

Any \mathbb{Z} -colorable link has a diagram admitting a simple \mathbb{Z} -coloring.

Colorally

L: a \mathbb{Z} -colorable link

$$\mathsf{mincol}_{\mathbb{Z}}(L) = \left\{ \begin{array}{l} 2 \; (L \; : \; \mathsf{splittable}) \\ 4 \; (L \; : \; \mathsf{non-splittable}) \end{array} \right.$$

 \rightarrow The obtained diagrams are often complicated.

 \rightarrow The obtained diagrams are often complicated.

Problem

 $\operatorname{mincol}_{\mathbb{Z}}(D_m) = ?$ for a minimal diagram D_m of a \mathbb{Z} -colorable link.

Theorem 3 [Ichihara-M., Proc.Inst.Nat.Sci., Nihon Univ., 2018]

- [1] For an even integer $n\geq 2$, the pretzel link $P(n,-n,\cdots,n,-n)$ with at least 4 strands has a minimal diagram D_m s.t. $\mathrm{mincol}_{\mathbb{Z}}(D_m)=n+2.$
- [2] For an integer $n \geq 2$, the pretzel link P(-n, n+1, n(n+1)) has a minimal diagram D_m s.t. $\mathrm{mincol}_{\mathbb{Z}}(D_m) = n^2 + n + 3$.
- [3] For even integer n>2 and non-zero integer p, the torus link T(pn,n) has a minimal diagram D_m s.t. $\mathrm{mincol}_{\mathbb{Z}}(D_m)=4$.

Theorem 4 [Ichihara-Ishikawa-M., In progress]

Let p,q and r be non-zero integers such that $|p|\geq q\geq 1$ and $r\geq 2$. If pr or qr are even, the torus link T(pr,qr) has a minimal diagram D_m s.t.

$$\mathsf{mincol}_{\mathbb{Z}}(D_m) = \left\{ \begin{array}{l} 4\ (r:\mathsf{even}) \\ "5"\ (r:\mathsf{odd}) \end{array} \right.$$

Remark

A torus link T(pr,qr) is \mathbb{Z} -colorable if and only if pr or qr are even.

[Proof of Theorem 4 (In the case r:even)] Let D be the following minimal diagram of T(pr,qr).

In the following, we will find a $\mathbb{Z}\text{-coloring }\gamma$ on D by assigning colors on the arcs of D.

We devide such arcs into q subfamilies $\mathbf{x}_1,\cdots,\mathbf{x}_q.$

We first find a local \mathbb{Z} -coloring γ . In the case r is even, we start with setting $\gamma(\mathbf{x}_i) = (\gamma(x_{i,1}), \gamma(x_{i,2}), \cdots, \gamma(x_{i,r}))$ = $(1, 0, \cdots, 0, 1)$ for any i.

We can extend γ on the arcs in the regions (1) and (q+1).

We can extend γ on the arcs in the regions $(2),(3),\cdots,(q)$.

Now, γ can be extended on all the arcs in the region depicted as follows.

Now, γ can be extended on all the arcs in the region depicted as follows.

Since D is composed of p copies of the local diagram, it concludes that D admits a \mathbb{Z} -coloring with only four colors $0,\ 1,\ 2$ and 3.

Thank you for your attention.