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In this talk, we focus on Rl and RIII.



Complex induced by spherical curve
and R, Rili

Notation

C : the set of the ambient isotopy classes of
the spherical curves

Def (RI-equivalence)
v, v.eC N
VgV 2 Ip,P”: representatives of v, v’ s.t. p<3p

Notation
é:: C/:\JRI
[P](< C): the equivalence class containing P




Complex induced by spherical curve
and RI, RIII

Ks: the 1-complex s.t.
{v|v: vertex of K3}«
v,v’ (€ C) are joined by an edge

some RI's and single RIIl _
&< P P

[OI]ES]

d,([P],[P’]): the distance from v to v’




Result 1

P: a spherical curve
D,: knot diag. obtained from P by adding over/
under information to each double pt. of P
K(P): an alternaing knot which possesses D,
that is an alternating diag.
K: a knot
g(K): the genus of K

Then, d;([P1,[P']) = | g(K*"*(P")) - g(K*"*(P))]

N. Ito and Y. Takimura,
Crosscap number and knot projections, Intrnat J Math. 29, No. 12 pp21.



Proof of Result 1

Key deformation
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Preliminaries

Def (RI-minimal)

A spherical curve P is called RI-minimal if P does
not contain a monogon.

Fact 1[Ito-Takimura]

For any spherical curve P,

the RI-minimal spherical curve obtained from P
IS unique up to ambi. iso.

P << > reduced(P)

some Rl’s

N. Ito and Y. Takimura,
(1, 2) and weak (1, 3) homotopies on knot projections,
J. Knot Theory Ramifications 22 (2013), 1350085, 14pp.




Previous result

Theorem|[lto-H.]

P, P’: spherical curves
some RI’s and single Rl

P €e————oan>p’

)

reduced(P) €———>reduced(P’)

single RIll, single a or single 6(m)




Complex induced by spherical curve
and Rlll,a,

C : the set of the ambient isotopy classes of
the spherical curves

C~ = C/:Vm

[P]( € C): the equivalence class containing P

By Fact 1, reduced(P) € [P].

Ksqs: the 1-complex s.t.
-v: vertex of Ks.s <> reduced(P)

v,v’(€ C) are joined by an edge

& reduced(P) €———————>reduced(P’)
single RIll, single a or single 6(m)



Complex induced by spherical curve
and Rl ., [
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d, g(reduced(P), reduced(P’))
: the distance from vto v’

Key fact
d,([P],[P’]) =d;,4(reduced(P), reduced(P’))




Lemmas

Lemmal
0. * consists of £*(1), RIII, 57(0).




Lemmas

Lemma 2
P, P’: spherical curves

B

=== P = g(k(P)) - g(k"(P))=1
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Lemmas

Lemma 3
P, P’: spherical curves

.. strong - . weak
R _: RN
l—>! - :

ingle st U
p single strong B p’ = |g(Kalt(Pl)) _ g(Kalt(p)) | =0or1l

single weak RI||

p & P g(KH(P)) - glKH(P)) = O




Proof of Lemma 3
s(P): the num. of the Seifert circles of K%t(P)

n(P): the num. of the double points of P
X (P) = s(P) - n(P) u< AN

1 Vi s(PYs(P)| &% ,,
1-2g(Ke"(P)) SN li( s(PI %5 /N
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= |glKk7"(P) - glker(p))| = [SPLP)

=Qorl



Proof of Observation 3

single weak RI!I ,
P P

/. weak A~
»RI
i €—>

= g(K(P")) - g(K(P)) =0



Proof of Result 1

RI’'s Op, O Op,, RI’s
P>p, P, =% p T3 pr

I I
reduced(P) reduced(P’)

g(KeI(P") - gK!(P))|
g(K"(P,)) - g(K(P))|
2 (g(Ket(P)) - g(K(P, )

= gl| g(K**(P,)) - g(K*"(P;,)) |

S d346(Po, Ppy) = d5([PLIP7])

Op.=RIll, aor p




Result 2
K: a knot

a,(K): the 2"d coefficient of Conway poly. of K

P: a spherical curve

KPos(P): a positive knot which possesses D,
that is an positive diag.

:' \ “ A_move :' \ ‘I
' . D e 2 ' .

K, K': knots N e
d A(K,K’): A- Gordian distance from Kto K’

N. Ito and Y. Takimura,
(1, 2) and weak (1, 3) homotopies on knot projections,
J. Knot Theory Ramifications 22 (2013), 1350085, 14pp.



Result 2

RI, Rl
P —>P

# of strong RIIl’s of a seq. )
= oflength dy([P,[P]) =9 alKP=(P), KP(P’))
= | a,(KPos(P’ )) -a,(KP>5(P)) |

7

In particular,

RI, weak Rlll, negative strong R!II /
P P

# of negative strong RIll’s of o el
a seq. of length d,([P],[P]) = dalKP?(P), KP*5(P"))
= a,(KPos(P’))-a,(K#*s(P))




Corollary of Result 2

K: a knot
u A(K): A-unknotting num. of K

# of negative strong RIll’s
of a seq. of length d,([P],[0]) = uA(KP%(P))

= a,(KP>*(P))



Proof of Result 2

Fact [Okada]

K K’: knots

If K’ is obtained from K by a single A-move,
then |a,(K) - a,(K)|= 1.

Then,
d A(KPoS(P), KPoS(P’)) Z | a,(KPoS(P’)) - a,(KPs(P)) |
M. Okada,

Delta-unknotting operation and the second coefficient of the
Conway polynomial, J. Math. Soc. Japan Vol. 42, No. 4, 1990.



Proof of Result 2

\7)/ 4-move \\/
' A S ;
By [Polyak-Viro ‘94], aZ(K)=(®, G,).

Then, by negative strong RIll, a, is increased by 1.

Hence,
# of negative strong Rlll’s of a seq.

of length d,([P],[P’]) is increased by

/7
a,(KPos(P’))-a,(KPo5(P)).
M. Polyak and O. Viro,
Gauss Diagram Formulas for Vassiliev Invariants,
International Math. Research Notices, No. 11, 1994.



