# Distances of complexes derived from spherical curves and their estimates

Joint work with Noboru Ito
University of Tokyo

#### Megumi Hashizume

Meiji Univ. Organization for the Strategic Coordination of Research and Intellectual Properties / OCAMI Dec.,23,2018

# **Deformations of spherical curves**

Spherical curve





Deformations of spherical curves







In this talk, we focus on RI and RIII.

# Complex induced by spherical curve and RI, RIII

#### **Notation**

C: the set of the ambient isotopy classes of the spherical curves

### **Def (RI-equivalence)**

$$v, v' \in C$$

$$v, v' \in \mathcal{C}$$
  
 $v \sim_{\mathsf{RI}} v' \Leftrightarrow_{\mathsf{def}} \exists P, P'$ : representatives of  $v, v'$  s.t.  $P \overset{\mathsf{RI's}}{\longleftrightarrow} P'$ 

#### **Notation**

$$\tilde{\mathcal{C}} := \mathcal{C}/\sim_{\mathsf{RI}}$$

 $[P](\in \mathcal{C})$ : the equivalence class containing P

# Complex induced by spherical curve and RI, RIII

 $\tilde{\mathcal{K}}_3$ : the 1-complex s.t.

- $\{v \mid v : \text{ vertex of } \tilde{\mathcal{K}}_3 \} \longleftrightarrow \tilde{\mathcal{C}}$
- •v,v' ( $\in \tilde{\mathcal{C}}$ ) are joined by an edge

$$\Leftrightarrow P \xleftarrow{\text{some RI's and single RIII}} P'$$



 $d_3([P],[P'])$ : the distance from v to v'

# Result 1

P: a spherical curve

 $D_P$ : knot diag. obtained from P by adding over/under information to each double pt. of P  $K^{alt}(P)$ : an alternaing knot which possesses  $D_P$  that is an alternating diag.

K: a knot

g(K): the genus of K

Then,  $d_3([P],[P']) \ge |g(K^{alt}(P')) - g(K^{alt}(P))|$ 

N. Ito and Y. Takimura, Crosscap number and knot projections, Intrnat J Math. 29, No. 12 pp21.

# **Proof of Result 1**

Key deformation



# **Preliminaries**

### **Def (RI-minimal)**

A spherical curve *P* is called *RI-minimal* if *P* does not contain a monogon.

Fact 1[Ito-Takimura]

For any spherical curve *P*, the RI-minimal spherical curve obtained from *P* is unique up to ambi. iso.

$$P \longleftrightarrow \text{reduced}(P)$$
some RI's

- N. Ito and Y. Takimura,
- (1, 2) and weak (1, 3) homotopies on knot projections,
- J. Knot Theory Ramifications 22 (2013), 1350085, 14pp.

# **Previous result**

```
Theorem[Ito-H.]
P, P': spherical curves
                some RI's and single RIII
                                       → reduced(P')
    reduced(P) \leftarrow
             single RIII, single \alpha or single \theta(m)
```

# Complex induced by spherical curve and RIII, $\alpha$ , $\beta$

 $\mathcal{C}$ : the set of the ambient isotopy classes of the spherical curves

$$\tilde{\mathcal{C}} := \mathcal{C}/\sim_{\mathsf{RI}}$$

 $[P](\subseteq \tilde{C})$ : the equivalence class containing P By Fact 1, reduced $(P) \subseteq [P]$ .

 $\mathcal{ ilde{K}}_{3lphaeta}$ : the 1-complex s.t.

- v: vertex of  $\tilde{\mathcal{K}}_{3\alpha\beta}$   $\longleftrightarrow$  reduced(P)
- • $v,v' (\in \tilde{\mathcal{C}})$  are joined by an edge
  - $\Leftrightarrow$  reduced(P)  $\longleftrightarrow$  reduced(P') single RIII, single  $\alpha$  or single  $\theta(m)$

# Complex induced by spherical curve and RIII, $\alpha$ , $\beta$



 $d_{3\alpha\beta}(\text{reduced}(P), \text{reduced}(P'))$ 

: the distance from v to v'

#### **Key fact**

 $d_3([P],[P']) = d_{3\alpha\beta}(\text{reduced}(P), \text{reduced}(P'))$ 

# Lemmas

#### Lemma 1

lpha + consists of eta+(1), RIII,eta-(0).



# Lemmas

#### Lemma 2

P, P': spherical curves

$$P \xrightarrow{\beta^+} P' \Rightarrow g(K^{alt}(P')) - g(K^{alt}(P)) = 1$$



### Lemmas

#### Lemma 3

P, P': spherical curves



$$P \overset{\text{single strong RIII}}{\blacktriangleright} P' \Rightarrow |g(K^{alt}(P')) - g(K^{alt}(P))| = 0 \text{ or } 1$$

$$P \overset{\text{single weak RIII}}{\longleftarrow} P' \Rightarrow g(K^{alt}(P')) - g(K^{alt}(P)) = 0$$

# **Proof of Lemma 3**

s(P): the num. of the Seifert circles of  $K^{alt}(P)$ 

n(P): the num. of the double points of P

$$\chi(P) = s(P) - n(P)$$

$$1-2g(K^{alt}(P))$$

$$p \text{ single strong RIII}$$

$$\Rightarrow |g(K^{alt}(P')) - g(K^{alt}(P))| = \frac{|s(P) - s(P')|}{2}$$

= 0 or 1

# **Proof of Observation 3**



$$\Rightarrow g(K^{alt}(P')) - g(K^{alt}(P)) = 0$$

# **Proof of Result 1**

$$P \xrightarrow{Rl's} \xrightarrow{Op_1} P_1 \xrightarrow{Op_2} \cdots \xrightarrow{Op_m} P_m \xrightarrow{Rl's} P'$$
 $reduced(P)$   $reduced(P')$   $reduced(P')$   $reduced(P')$ 

$$|g(K^{alt}(P')) - g(K^{alt}(P))|$$

$$= |g(K^{alt}(P_m)) - g(K^{alt}(P_0))|$$

$$= |\sum_{i=1}^{m} (g(K^{alt}(P_i)) - g(K^{alt}(P_{i-1})))|$$

$$\leq \sum_{i=1}^{m} |g(K^{alt}(P_i)) - g(K^{alt}(P_{i-1}))|$$

$$\leq d_{3\alpha\beta}(P_0, P_m) = d_3([P], [P'])$$

# Result 2

K: a knot

 $a_2(K)$ : the 2<sup>nd</sup> coefficient of Conway poly. of K

P: a spherical curve

 $K^{pos}(P)$ : a positive knot which possesses  $D_P$  that is an positive diag.



K, K': knots

 $d_{\wedge}(K,K')$ :  $\triangle$ - Gordian distance from K to K'

N. Ito and Y. Takimura,

(1, 2) and weak (1, 3) homotopies on knot projections,

J. Knot Theory Ramifications 22 (2013), 1350085, 14pp.

# Result 2

$$P \overset{\mathsf{RI}, \, \mathsf{RIII}}{\longleftrightarrow} P'$$
 $\Rightarrow$  # of strong RIII's of a seq.
of length  $d_3([P],[P'])$ 
 $\geq d_{\Delta}(K^{pos}(P), K^{pos}(P'))$ 
 $\geq |a_2(K^{pos}(P')) - a_2(K^{pos}(P))|$ 

In particular,
 $P \overset{\mathsf{RI}, \, \mathsf{weak \, RIII}, \, \mathsf{negative \, strong \, RIII}}{\Rightarrow} P'$ 
 $\Rightarrow$  # of negative strong RIII's of a seq. of length  $d_3([P],[P']) = d_{\Delta}(K^{pos}(P), K^{pos}(P')) = a_2(K^{pos}(P')) - a_2(K^{pos}(P))$ 

# **Corollary of Result 2**

K: a knot

 $u_{\Delta}(K)$ :  $\Delta$ -unknotting num. of K

```
# of negative strong RIII's of a seq. of length d_3([P],[o]) \ge u_{\triangle}(K^{pos}(P)) \ge a_2(K^{pos}(P))
```

# **Proof of Result 2**

# Fact [Okada]

*K,K'*: knots

If K' is obtained from K by a single  $\Delta$ -move, then  $|a_2(K') - a_2(K)| = 1$ .

Then,

$$d_{\Delta}(K^{pos}(P), K^{pos}(P')) \ge |a_2(K^{pos}(P')) - a_2(K^{pos}(P))|$$

M. Okada,

Delta-unknotting operation and the second coefficient of the Conway polynomial, J. Math. Soc. Japan Vol. 42, No. 4, 1990.

# **Proof of Result 2**



By [Polyak-Viro '94], 
$$a_2(K) = \langle \bigotimes, G_K \rangle$$
.

- Then, by negative strong RIII,  $a_2$  is increased by 1. Hence,
- # of negative strong RIII's of a seq.
- of length  $d_3([P],[P'])$  is increased by

$$a_2(K^{pos}(P'))-a_2(K^{pos}(P)).$$

M. Polyak and O. Viro,

Gauss Diagram Formulas for Vassiliev Invariants, International Math. Research Notices, No. 11, 1994.