A characterization of the I'-polynomials of
knots with clasp number at most two
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Clasp number

Every knot in S3 bounds a singular disk with only clasp
singularities.

Such a singular disk is called a clasp disk.

The clasp number clasp(K) of a knot K is the minimum
number of clasp singularities among all clasp disks of K.

The clasp number of the unknot U is zero: clasp(U) = 0.



IC1: the set of knots which bound clasp disks with one clasp
singularity.

It is known that }C; = {doubled knots}.




There exist two homeomorphic classes of clasp disks with
two clasp singularities:
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Kg: the set of knots which bound clasp disks of type d
(=0,1). We see that 5; € KN K3:
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We see easily that IC; C K3 N KC3.

(K3 N K3\ Ky




Fact [Morimoto 1998, Kadokami and Kawamura 2014]

The Conway polynomials of knots with clasp number at most
two are characterized:

(i) V(K1) = {14+ b22 | be Z}.

(i) V(K3) =

{1 + (b1 —|— b2 — EI(]. — 5))22 + (blbz + €b3(b3 —|— 1-— 5))Z4
| g = :|:1,b1,b2, b3 € Z}.

How about a characterization of the I'-polynomials of knots
with clasp number at most two?

The I'-polynomial is the common zeroth coefficient
polynomial of the HOMFLYPT and Kauffman polynomials.



The HOMFLYPT polynomial P(L;y, z) € Z[y*!, z+1]
is an invariant of an oriented link L satisfying the following:

P(U) =1, yP(L4) +y 'P(L_) = 2P(Ly).
XS

The Kauffman polynomial F(L;a,b) € Z[ail,bil]
is an invariant of an oriented link L satisfying the following;:

F(U) =1, aF(D4)+a 'F(D_) = b(F(Do)+a *F(Dc)),

where 2v = w(D;) — w(Ds) — 1.
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I'-polynomial
L: an r-component link.

P(L) = (y2) "™ ) pulLsy)2*",
n>0

F(L) = (ab)™" " Y fu(L;a)b™,
n>0
where p,(L;y) € Z[y*'] and f,.(L;a) € Z[a*'].
Fact [Lickorish 1988] po(L;y) = fo(L;y).

The polynomial po(L;y) = fo(L;y) is a Laurent polynomial
of the variable —y2. Putting x = —y?2, we call the
polynomial the I'-polynomial of L:

I(L;z) = T(L; —y?) = po(L;y) = fo(Lsy).



Example H ~: the negative Hopf link.

IH™) =z — 2%

P(H™) = (y2) ' ((—v* — ") +y*2?).

F(H™) = (ab) " }((—a® — a*) + a®b + (a® + a*)b?).
T(H™;—y?) = po(H 5y) = fo(H 3y) = —y* —y™*.

I'(4,) = ! —1+a.

P(41) = (—y ?—1—y*) + 2%

F4)=(—a?—-1—-ad*)+(—a" ' —a)b
+ (@ 24+24+a®)b?+ (a7 +a)bd.

I'(415—y%) = po(4139) = fo(413y) = —y 2 — 1 — 3>



The I'-polynomial has the following skein relation:

I'v)=1, —«I'(L4+)+T'(L-) = {O ifpu=1

where p = (r4 — 19 +1)/2 (= 0,1) for the numbers r, 7
of components of L, Lo, respectively.

Proposition Let L = K; U---U K, be an r-component link
and lk(L) the total linking number of L. Then we have

I'(L)=1—-z)" e~ *O1(Ky). - -T(K,).
We obtain a skein relation for a knot as follows:
—aT(K4) + T(K_) = (1 - z)z~ *E VKT (K)T(K"),

where (K4, K_, K, = K’'U K") is a skein triple such that
K., K_, K’, and K” are knots.



Example T'(K.)
=2z I0(K_) — 2~ '(1 — z)z~ KE' VKD (K)T(K")
=z l—1+u=.
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Fact [Kawauchi 1994] The I'-polynomials of knots are
characterized:

IC: the set of knots.
') =S8,

where
S={1+1-a)*f(2) | f() € Z[z*"]}.
In particular, for K € IC,

I'K;-1)=1,5,9,13 (mod 16).



Theorem 1 The I'-polynomials of knots with clasp number at
most two are characterized:

(i) T'(KC1) = S1, where
S1={2* + (1 —2)2%(1 + (1 — 2)*f())"
|e=%1,d € Z, f(x) € Z[x*']}.

(i) T(IC3) = SS for 6 = 0,1, where

Sy =

{.’1361+€2

te1(1—a)a® (14 (1 — 2)2fi1(z))”

tea(1 —z)a® (14 (1 — 2)2 fo(x))”

+de1e2(1 — x)2xds (1 + (1 — :c)zfl(:v)) (1 + (1 — $)2f2(a:))
1+ @1 —2z)*f3(z))

| e1,62 = +1,d1,dz,d3 € Z, f1(x), f2(x), fa(x) € Z[z+1]}.



Corollary

(i) If K € IC4, then we have
I'(K;—-1) =1,13 (mod 16).
(i) If K € K3, then we have

1,5,13 (mod 16) if 6 =0,

[(K;—1) =
(K5 —=1) {1,5,9,13 (mod 16) if § = 1.

(iii) If K#K' is the connected sum of non-trivial knots
K and K’ with clasp(K#K') =2 <
clasp(K) = clasp(K’) = 1 [Morimoto 1987], then we have

I'K#K’;—1) =1,9,13 (mod 16).



Example It is known that clasp(31) = clasp(4;) =1,
clasp(815) = clasp(820) = clasp(821) = 2
in Kadokami-Kawamura’s table.

We have F(31#31; —1) = F(31#41; —1) = F(41#41; —1) =
F(815; —1) = F(Szo; —1) = F(821; —1) =9 (mod 16)

By Corollary, we see that 31#31, 31#41, 41#41, 815, 820,
821 € IC3 \ (K3 N IC3).

We see easily that the connected sum K#K'’ € K for knots
K and K’ with clasp(K) = clasp(K’) = 1.

Question If K € K9, then K is prime?

I'(K) = T(KQUKL)?



Theorem 2 There exist infinitely many knots in each set
(K3NK) \ K1, K3\ (K3NK3), K3\ (K2NK3).

K5\ (K3 N K3) K3\ (K3 N K3)

(K§NK3)\ Ky



Proof of Theorem 2
Proposition (i) K(p,q,7) = K(r,q,p).

(i) K(p,q,7) € K3 UK.
(iii) If g is odd, then K (p,q,r) € K9.

(iv) If q is even, then K (p,q,r) € K3.
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By a characterization of the Conway polynomials of knots
with clasp number at most two, we obtain the following:

Lemma K: a knot with V(K) = 1+m2z? +nz* (m,n € Z).

() fan—(m—1)2—-1>0and a+ 3 # 2 (mod 4) for any
integers o, 8 with a8 = 4n — (m 4+ 1)2 + 1, then K ¢ K9.

(ii) If 4n — m?2 > 0 and a + 3 # 0 (mod 4) for any integers
o, 3 with a8 = 4n — m?2, then K ¢ K1.



e For any integer r(# —1,0),
K(0,2,7) € (KN K1)\ K; and
the knots K (0,2, r) are mutually distinct.
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By Lemma and Corollary, we obtain the following:

e For any integer q,
K(—4q — 7,29+ 1,—4q+2) € K3\ (K3 NK}) and
the knots K(—4q — 7,2q + 1, —4q + 2) are mutually distinct.

V(K(—4q —7,2q+1,—4q +2)) =1 4+ 422 + 62°.

I'(K(—4q—17,2q+1,—4q+2)) = 1+(1—z)(z~ 93—z ~911),
e For any integer g,

K(4q — 3,—4q 4+ 4,4q — 3) € K3\ (K3 N K1) and

the knots K(4q — 3,—4q + 4,4q — 3) are mutually distinct.

I'(K(4q—3,—4q+4,49—3)) = 22 +2(1—z)z?+ (1—x)?x29.



Proof of Theorem 1

We consider the following three clasp disks:
™ Y M

(¢)-, (e1)-, (e2)-clasp bands are curled bands with no twists
and (g)-, (e1)-, (e2)-clasp singularities, respectively.
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a, a1, az: core arcs of (¢)-, (e1)-, (e2)-clasp bands.
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a, ai, az, ajaz: knot diagrams.
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By applying the skein relation, we obtain the following:
e K € K;.

T(K)=2"°+(~2)" % (1-2)2*@T(a)?,
where w(a) is the withe of a.
e K € K.

I'(K) = o 17°
+ (=)~ (1 - @)a" @ =T (@)

€2

+(—2)~ % (1 — 2)zv @) a0 (a3)?,

where w(ay), w(az) are the writhes of a7, a3, respectively.



o K € K3.
I'K) =ax 17¢2
+(—2)” ™ (1 - 2)a" ™)~ (a)?

+(—2) ™% (1 - 2)a" (@~ (az)?
€1+tex+2

4 (—a) " (1 = )20 K(@1,02) Y w(@n) +w (@)
['(a1)T (az)T'(a1az),

where 1k(a7,az) is the linking number of a; and az,
w(a1), w(az) are the writhes of aj, az, respectively.

By applying Kawauchi’s result to I'(a), I'(a7), T'(az),
I'(a1az), we obtain the desired presentation.



Conversely, we show that for any Laurent polynomial
p(x) € S1, SY, S there exists a knot K € K1, K3, K3
satisfying T'(K) = ¢(x), respectively.

If p(x) € S1, SY, then it is easy to construct the desired
knot by Kawauchi’s result.

If p(x) € S1, then there exist three knots K1, K2, K3 such
that

MK =1+ (1 —x)%fi(z),
I(K2) =1+ (1 —x)%fz(x),
I'(K3) =1+ (1 —x)%f3(x)

by Kawauchi’s result.



Moreover, we apply the following fact to the knots K;, Ko,
Ks.

Fact [Kinoshita 1986] For any knots K’, K/, K’ and any
integer d, there exists a O-curve ag U a; U ap in S2 with
dag = Oy = da such that lk(aj,az) =d and ap U ag,
ag U as, ap U as are isotopic to K/, K”, K'’, respectively,
where lk(aj, @3) is the linking number of knots a3 and as.



Therefore, for any integer d, there exists a 6-curve

0123 = g U a1 U g with dag = daxq1 = s such that
lk(a1,a2) =d and ap U a1, g U a2, a3 U o are isotopic
to K, K2, K3, respectively. By using 0123, we can
construct the desired knot.




Thank you.



