A characterization of the Γ -polynomials of knots with clasp number at most two

Hideo Takioka, OCAMI

結び目の数学 VIII 早稲田大学 2015 年 12 月 26 日

Clasp number

Every knot in S^3 bounds a singular disk with only clasp singularities.

Such a singular disk is called a clasp disk.

The clasp number $\operatorname{clasp}(K)$ of a knot K is the minimum number of clasp singularities among all clasp disks of K.

The clasp number of the unknot U is zero: $\operatorname{clasp}(U) = 0$.

 \mathcal{K}_1 : the set of knots which bound clasp disks with one clasp singularity.

It is known that $K_1 = \{\text{doubled knots}\}.$

There exist two homeomorphic classes of clasp disks with two clasp singularities:

 \mathcal{K}_2^{δ} : the set of knots which bound clasp disks of type δ (=0,1). We see that $5_1 \in \mathcal{K}_2^0 \cap \mathcal{K}_2^1$:

We see easily that $\mathcal{K}_1\subset\mathcal{K}_2^0\cap\mathcal{K}_2^1.$

Fact [Morimoto 1998, Kadokami and Kawamura 2014]

The Conway polynomials of knots with clasp number at most two are characterized:

(i)
$$\nabla(\mathcal{K}_1) = \{1 + bz^2 \mid b \in \mathbb{Z}\}.$$

$$\begin{aligned} &\textbf{(ii)} \ \nabla(\mathcal{K}_2^{\delta}) = \\ &\{1 + \big(b_1 + b_2 - \varepsilon(1 - \delta)\big)z^2 + \big(b_1b_2 + \varepsilon b_3(b_3 + 1 - \delta)\big)z^4 \\ &|\ \varepsilon = \pm 1, b_1, b_2, b_3 \in \mathbb{Z}\}. \end{aligned}$$

How about a characterization of the Γ -polynomials of knots with clasp number at most two?

The Γ -polynomial is the common zeroth coefficient polynomial of the HOMFLYPT and Kauffman polynomials.

The HOMFLYPT polynomial $P(L;y,z) \in \mathbb{Z}[y^{\pm 1},z^{\pm 1}]$ is an invariant of an oriented link L satisfying the following:

$$P(U) = 1, \; y P(L_+) + y^{-1} P(L_-) = z P(L_0).$$

The Kauffman polynomial $F(L;a,b)\in \mathbb{Z}[a^{\pm 1},b^{\pm 1}]$ is an invariant of an oriented link L satisfying the following:

$$F(U) = 1, \ aF(D_{+}) + a^{-1}F(D_{-}) = b(F(D_{0}) + a^{-2\nu}F(D_{\infty})),$$

where $2\nu = w(D_{+}) - w(D_{\infty}) - 1$.

$$D_{+}$$
 D_{-} D_{0} D_{∞}

Γ -polynomial

L: an r-component link.

$$P(L) = (yz)^{-r+1} \sum_{n \geq 0} p_n(L;y) z^{2n},$$

$$F(L) = (ab)^{-r+1} \sum_{n \ge 0} f_n(L; a) b^n,$$

where $p_n(L;y) \in \mathbb{Z}[y^{\pm 1}]$ and $f_n(L;a) \in \mathbb{Z}[a^{\pm 1}]$.

Fact [Lickorish 1988] $p_0(L;y) = f_0(L;y)$.

The polynomial $p_0(L;y)=f_0(L;y)$ is a Laurent polynomial of the variable $-y^2$. Putting $x=-y^2$, we call the polynomial the Γ -polynomial of L:

$$\Gamma(L;x) = \Gamma(L;-y^2) = p_0(L;y) = f_0(L;y).$$

$$\Gamma(H^-) = rac{x-x^2}{}.$$
 $P(H^-) = (yz)^{-1}((-y^2-y^4)+y^2z^2).$

$$F(H^-) = (ab)^{-1}((-a^2 - a^4) + a^3b + (a^2 + a^4)b^2).$$

$$\Gamma(H^-; -y^2) = p_0(H^-; y) = f_0(H^-; y) = -y^2 - y^4.$$

$$\Gamma(11^{\circ}, y^{\circ}) = p_0(11^{\circ}, y) = f_0(11^{\circ}, y) = y^{\circ}y^{\circ}.$$

$$\Gamma(4_1) = x^{-1} - 1 + x.$$

$$egin{aligned} F(4_1) &= u - v^{-2} - 1 - v^2 + z^2. \ F(4_1) &= (-a^{-2} - 1 - a^2) + (-a^{-1} - a)b \ &+ (a^{-2} + 2 + a^2)b^2 + (a^{-1} + a)b^3. \end{aligned}$$

$$\Gamma(4_1; -y^2) = p_0(4_1; y) = f_0(4_1; y) = -y^{-2} - 1 - y^2.$$

The Γ -polynomial has the following skein relation:

$$\Gamma(U)=1,\; -x\Gamma(L_+)+\Gamma(L_-)=egin{cases} \Gamma(L_0) & ext{if } \mu=0,\ 0 & ext{if } \mu=1, \end{cases}$$

where $\mu=(r_+-r_0+1)/2~(=0,1)$ for the numbers r_+ , r_0 of components of L_+ , L_0 , respectively.

Proposition Let $L=K_1\cup\cdots\cup K_r$ be an r-component link and $\operatorname{lk}(L)$ the total linking number of L. Then we have

$$\Gamma(L) = (1-x)^{r-1}x^{-\operatorname{lk}(L)}\Gamma(K_1)\cdots\Gamma(K_r).$$

We obtain a skein relation for a knot as follows:

$$-x\Gamma(K_{+}) + \Gamma(K_{-}) = (1-x)x^{-\operatorname{lk}(K' \cup K'')}\Gamma(K')\Gamma(K''),$$

where $(K_+,K_-,K_0=K'\cup K'')$ is a skein triple such that K_+ , K_- , K', and K'' are knots.

Example $\Gamma(K_+)$ $= x^{-1}\Gamma(K_-) - x^{-1}(1-x)x^{-\operatorname{lk}(K' \cup K'')}\Gamma(K')\Gamma(K'')$ $=x^{-1}-1+x$. K_{+}

<u>Fact</u> [Kawauchi 1994] The Γ -polynomials of knots are characterized:

 \mathcal{K} : the set of knots.

$$\Gamma(\mathcal{K})=S,$$

where

$$S = \{1 + (1-x)^2 f(x) \mid f(x) \in \mathbb{Z}[x^{\pm 1}]\}.$$

In particular, for $K \in \mathcal{K}$,

$$\Gamma(K;-1) = 1, 5, 9, 13 \pmod{16}.$$

Theorem 1 The Γ -polynomials of knots with clasp number at most two are characterized:

(i)
$$\Gamma(\mathcal{K}_1) = S_1$$
, where

$$S_1 = \{x^{arepsilon} + arepsilon (1-x)x^d ig(1+(1-x)^2 f(x)ig)^2 \ | \ arepsilon = \pm 1, d \in \mathbb{Z}, f(x) \in \mathbb{Z}[x^{\pm 1}]\}.$$

(ii) $\Gamma(\mathcal{K}_2^{\delta}) = S_2^{\delta}$ for $\delta = 0, 1$, where

$$S_2^\delta =$$

$$\{x^{arepsilon_1+arepsilon_2}$$

$$+arepsilon_1 (1-x) x^{d_1} ig(1+(1-x)^2 f_1(x)ig)^2$$

$$+arepsilon_{1}(1-x)x^{d_{1}}(1+(1-x)^{2}f_{1}(x)) + arepsilon_{2}(1-x)x^{d_{2}}(1+(1-x)^{2}f_{2}(x))^{2}$$

$$+arepsilon_2(1-x)x^{d_2}ig(1+(1-x)^2f_2(x)ig)^2 \ +\deltaarepsilon_1arepsilon_2(1-x)^2x^{d_3}ig(1+(1-x)^2f_1(x)ig)ig(1+(1-x)^2f_2(x)ig)$$

$$+\delta \varepsilon_1 \varepsilon_2 (1-x)^2 x^a$$

$$ig(1+(1-x)^2f_3(x)ig) \ | \ arepsilon_1,arepsilon_2=\pm 1, d_1, d_2, d_3\in \mathbb{Z}, f_1(x), f_2(x), f_3(x)\in \mathbb{Z}[x^{\pm 1}] \}.$$

Corollary

(i) If $K \in \mathcal{K}_1$, then we have

$$\Gamma(K; -1) = 1, 13 \pmod{16}$$
.

(ii) If $K \in \mathcal{K}_2^{\delta}$, then we have

$$\Gamma(K;-1) = egin{cases} 1,5,13 \pmod{16} & ext{if } \delta = 0, \ 1,5,9,13 \pmod{16} & ext{if } \delta = 1. \end{cases}$$

(iii) If K#K' is the connected sum of non-trivial knots K and K' with $\mathrm{clasp}(K\#K')=2\iff \mathrm{clasp}(K)=\mathrm{clasp}(K')=1$ [Morimoto 1987], then we have

$$\Gamma(K \# K'; -1) = 1, 9, 13 \pmod{16}.$$

Example It is known that $\operatorname{clasp}(3_1) = \operatorname{clasp}(4_1) = 1$, $\overline{\operatorname{clasp}(8_{15})} = \operatorname{clasp}(8_{20}) = \operatorname{clasp}(8_{21}) = 2$ in Kadokami-Kawamura's table.

We have $\Gamma(3_1\#3_1;-1)=\Gamma(3_1\#4_1;-1)=\Gamma(4_1\#4_1;-1)=\Gamma(8_{15};-1)=\Gamma(8_{20};-1)=\Gamma(8_{21};-1)=9\pmod{16}.$

By Corollary, we see that $3_1\#3_1$, $3_1\#4_1$, $4_1\#4_1$, 8_{15} , 8_{20} , $8_{21}\in\mathcal{K}_2^1\setminus(\mathcal{K}_2^0\cap\mathcal{K}_2^1)$.

We see easily that the connected sum $K\#K'\in\mathcal{K}_2^1$ for knots K and K' with $\mathrm{clasp}(K)=\mathrm{clasp}(K')=1.$

Question If $K \in \mathcal{K}_2^0$, then K is prime?

$$\Gamma(\mathcal{K}) = \Gamma(\mathcal{K}_2^0 \cup \mathcal{K}_2^1)$$
?

Theorem 2 There exist infinitely many knots in each set $(\mathcal{K}_2^0 \cap \mathcal{K}_2^1) \setminus \mathcal{K}_1$, $\mathcal{K}_2^0 \setminus (\mathcal{K}_2^0 \cap \mathcal{K}_2^1)$, $\mathcal{K}_1^1 \setminus (\mathcal{K}_2^0 \cap \mathcal{K}_2^1)$.

Proof of Theorem 2

Proposition (i) K(p,q,r) = K(r,q,p).

- (ii) $K(p,q,r)\in\mathcal{K}_2^0\cup\mathcal{K}_2^1.$
- (iii) If q is odd, then $K(p,q,r)\in\mathcal{K}_2^0.$
- (iv) If q is even, then $K(p,q,r)\in\mathcal{K}_2^1$.

By a characterization of the Conway polynomials of knots with clasp number at most two, we obtain the following:

Lemma
$$K$$
: a knot with $\nabla(K)=1+mz^2+nz^4$ $(m,n\in\mathbb{Z}).$

- (i) If $4n (m-1)^2 1 > 0$ and $\alpha + \beta \neq 2 \pmod{4}$ for any integers α , β with $\alpha\beta = 4m (m+1)^2 + 1$, then $K \notin \mathcal{K}^0$
- integers α,β with $\alpha\beta=4n-(m+1)^2+1$, then $K\notin\mathcal{K}_2^0$. (ii) If $4n-m^2>0$ and $\alpha+\beta\neq 0\pmod 4$ for any integers

 α, β with $\alpha\beta = 4n - m^2$, then $K \notin \mathcal{K}_2^1$.

ullet For any integer r(
eq -1,0),

 $K(0,2,r)\in (\mathcal{K}_2^0\cap\mathcal{K}_2^1)\setminus\mathcal{K}_1$ and

the knots K(0,2,r) are mutually distinct.

By Lemma and Corollary, we obtain the following:

• For any integer q,

$$K(-4q-7,2q+1,-4q+2)\in\mathcal{K}_2^0\setminus(\mathcal{K}_2^0\cap\mathcal{K}_2^1)$$
 and the knots $K(-4q-7,2q+1,-4q+2)$ are mutually distinct.

$$\nabla(K(-4q-7,2q+1,-4q+2)) = 1 + 4z^2 + 6z^4.$$

$$\Gamma(K(-4q-7,2q+1,-4q+2)) = 1 + (1-x)(x^{-q-3} - x^{-q+1}).$$

ullet For any integer q,

 $K(4q-3,-4q+4,4q-3)\in\mathcal{K}_2^1\setminus(\mathcal{K}_2^0\cap\mathcal{K}_2^1)$ and the knots K(4q-3,-4q+4,4q-3) are mutually distinct.

$$\Gamma(K(4q-3, -4q+4, 4q-3)) = x^2 + 2(1-x)x^2 + (1-x)^2x^{2q}.$$

Proof of Theorem 1

We consider the following three clasp disks:

 (ε) -, (ε_1) -, (ε_2) -clasp bands are curled bands with no twists and (ε) -, (ε_1) -, (ε_2) -clasp singularities, respectively.

a, a_1 , a_2 : core arcs of (ε) -, (ε_1) -, (ε_2) -clasp bands.

 \widehat{a} , $\widehat{a_1}$, $\widehat{a_2}$, $\widehat{a_1a_2}$: knot diagrams.

By applying the skein relation, we obtain the following:

• $K \in \mathcal{K}_1$.

$$\Gamma(K) = x^{-\varepsilon} + (-x)^{-\frac{\varepsilon+1}{2}} (1-x) x^{w(\widehat{a})} \Gamma(\widehat{a})^{2},$$

where $w(\widehat{a})$ is the withe of $\widehat{a}.$

• $K \in \mathcal{K}_2^0$.

$$\begin{split} \Gamma(K) &= x^{-\varepsilon_1 - \varepsilon_2} \\ &+ (-x)^{-\frac{\varepsilon_1 + 1}{2}} (1 - x) x^{w(\widehat{a_1}) - \varepsilon_2} \Gamma(\widehat{a_1})^2 \\ &+ (-x)^{-\frac{\varepsilon_2 + 1}{2}} (1 - x) x^{w(\widehat{a_2}) - \varepsilon_1} \Gamma(\widehat{a_2})^2, \end{split}$$

where $w(\widehat{a_1})$, $w(\widehat{a_2})$ are the writhes of $\widehat{a_1}$, $\widehat{a_2}$, respectively.

• $K \in \mathcal{K}_2^1$.

$$\begin{split} \Gamma(K) &= x^{-\varepsilon_1 - \varepsilon_2} \\ &+ (-x)^{-\frac{\varepsilon_1 + 1}{2}} (1 - x) x^{w(\widehat{a_1}) - \varepsilon_2} \Gamma(\widehat{a_1})^2 \\ &+ (-x)^{-\frac{\varepsilon_2 + 1}{2}} (1 - x) x^{w(\widehat{a_2}) - \varepsilon_1} \Gamma(\widehat{a_2})^2 \\ &+ (-x)^{-\frac{\varepsilon_1 + \varepsilon_2 + 2}{2}} (1 - x)^2 x^{\operatorname{lk}(\widehat{a_1}, \widehat{a_2}) + w(\widehat{a_1}) + w(\widehat{a_2})} \end{split}$$

where $lk(\widehat{a_1}, \widehat{a_2})$ is the linking number of $\widehat{a_1}$ and $\widehat{a_2}$, $w(\widehat{a_1})$ $w(\widehat{a_2})$ are the writhes of $\widehat{a_1}$ $\widehat{a_2}$ respectively

 $\Gamma(\widehat{a_1})\Gamma(\widehat{a_2})\Gamma(\widehat{a_1a_2})$,

 $w(\widehat{a_1})$, $w(\widehat{a_2})$ are the writhes of $\widehat{a_1}$, $\widehat{a_2}$, respectively.

By applying Kawauchi's result to $\Gamma(\widehat{a})$, $\Gamma(\widehat{a_1})$, $\Gamma(\widehat{a_2})$, $\Gamma(\widehat{a_1a_2})$, we obtain the desired presentation.

Conversely, we show that for any Laurent polynomial $\varphi(x) \in S_1$, S_2^0 , S_2^1 there exists a knot $K \in \mathcal{K}_1$, \mathcal{K}_2^0 , \mathcal{K}_2^1 satisfying $\Gamma(K) = \varphi(x)$, respectively.

If $\varphi(x) \in S_1$, S_2^0 , then it is easy to construct the desired knot by Kawauchi's result.

If $\varphi(x) \in S_2^1$, then there exist three knots K_1 , K_2 , K_3 such that

$$\Gamma(K_1) = 1 + (1-x)^2 f_1(x),$$

 $\Gamma(K_2) = 1 + (1-x)^2 f_2(x),$
 $\Gamma(K_3) = 1 + (1-x)^2 f_3(x)$

by Kawauchi's result.

Moreover, we apply the following fact to the knots K_1 , K_2 , K_3 .

Fact [Kinoshita 1986] For any knots K', K'', K''' and any integer d, there exists a θ -curve $\alpha_0 \cup \alpha_1 \cup \alpha_2$ in S^3 with $\partial \alpha_0 = \partial \alpha_1 = \partial \alpha_2$ such that $\mathrm{lk}(\widehat{\alpha_1}, \widehat{\alpha_2}) = d$ and $\alpha_0 \cup \alpha_1$, $\alpha_0 \cup \alpha_2$, $\alpha_1 \cup \alpha_2$ are isotopic to K', K'', K''', respectively, where $\mathrm{lk}(\widehat{\alpha_1}, \widehat{\alpha_2})$ is the linking number of knots $\widehat{\alpha_1}$ and $\widehat{\alpha_2}$.

Therefore, for any integer d, there exists a θ -curve $\theta_{123}=\alpha_0\cup\alpha_1\cup\alpha_2$ with $\partial\alpha_0=\partial\alpha_1=\partial\alpha_2$ such that $\mathrm{lk}(\widehat{\alpha_1},\widehat{\alpha_2})=d$ and $\alpha_0\cup\alpha_1$, $\alpha_0\cup\alpha_2$, $\alpha_1\cup\alpha_2$ are isotopic to K_1 , K_2 , K_3 , respectively. By using θ_{123} , we can construct the desired knot.

Thank you.