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Amphicheiral knots

Definition

A knot K in S3 is −amphicheiral if there exists an orientation reversing
homeomorphism f : (S3,K )→ (S3,K ) such that f (K ) is K with the
reversed orientation. A knot K in S3 is strongly −amphicheiral if we can
choose f to be an involution.

Example

The figure-eight knot, 41, is strongly −amphicheiral.

Kawauchi: Every hyperbolic −amphicheiral knot is strongly
−amphicheiral.

Hartley, Whitten: Not every −amphicheiral knot is strongly
−amphicheiral.
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Miyazaki knot

Definition

A Miyazaki knot K is a fibered, −amphicheiral knot with irreducible
Alexander polynomial ∆K (t).

Example

41 is fibred with Alexander polynomial t2 − 3t + 1.
It is a Miyazaki knot.

Question: Are Miyazaki knots strongly −amphicheiral?
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Motivations

This is a joint work with Min Hoon Kim (arXiv:1604.04870).
The original motivation is the slice-ribbon conjecture.

A knot K ⊂ S3 is called slice if it bounds an embedded disk D in D4,
and it is called ribbon if it bounds an immersed disk in S3 with only
ribbon singularities.

Every ribbon knot is a slice knot. The slice-ribbon conjecture asks if
the converse is true.
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Motivations

We are interested in Miyazaki knots because:

Miyazaki: For a Miyazaki knot K , the cable knot K2n,1 is
algebraically slice but not ribbon.

Kawauchi: For a strongly −amphicheiral Miyazaki knot K , the cable
knot K2n,1 is rationally slice.

If we can find a certain K2n,1 that is slice, then this gives a
counterexample to the slice-ribbon conjecture.

Theorem (Kim-W)

If K is Miyazaki, then K is rationally slice.
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Classification of (Miyazaki) knots

Remember that a Miyazaki knot is a fibered, −amphicheiral knot with
irreducible Alexander polynomial.
Fact: Every knot is either hyperbolic, a torus knot, or a satellite knot.

By Kawauchi, a hyperbolic Miyazaki knot is strongly −amphicheiral.

Non-trivial torus knots are not −amphicheiral, hence not Miyazaki.

Hence, we should focus on satellite Miyazaki knots.

Let K = P(J) denote a satellite knot K with pattern (S1 × D2,P) and
companion J.

Lemma (Kim-W)

If a satellite knot K = P(J) is Miyazaki, then P is an unknotted pattern, J
is Miyazaki, and g(J) < g(K ).

Consequently, all Miyazaki knots can be obtained from hyperbolic ones via
iterated satellite operations.
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Proof of the lemma

Main observation: the fiberness, chirality, and the Alexander polynomial of
a satellite knot K = P(J) are “determined” by those of (S1 × D2,P) and
J.

∆K (t) = ∆P(t)∆J(tw ), where w is the winding number of P.

K = P(J) is fibered if and only if both (S1 × D2,P) and J are
fibered. Moreover, the winding number w 6= 0.

Hence, if K is Miyazaki, then both P and J are fibered.

Since P and J are fibered, deg ∆P(t) = 2g(P) and deg ∆J(t) = 2g(J).
From the irreducibility of ∆K (t) and ∆J(tw ) 6= 1, we conclude that
∆P(t) = 1 and hence P is an unknotted pattern.

Since ∆K (t) is irreducible, ∆J(tw ) = ∆K (t) implies that ∆J(t) is also
irreducible. Actually |w | ≥ 2, so g(K ) = |w |g(J) > g(J).
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Symmetry of links

In order to study the chirality of a satellite knot, we introduce the more
general notion of symmetry of a link.

We say that a link (S3, L = K1 t · · · t Kn) has symmetry (α, ε1, · · · , εn) if
there exists a self-homeomorphism f of S3 of class α that restricts to a
self-homeomorphism of each component Ki of class εi for each i .

α takes the value ±1 or J±, which stands for orientation
preserving/reversing homeomorphisms or involutions of S3,
respectively

εi = ±1 depending on whether f |Ki
preserves or reverses

homeomorphisms of Ki .

In particular, a knot is (S3,K ) is −amphicheiral if it has symmetry
(−1,−1); and it is strongly −amphicheiral if it has symmetry (J−,−1).
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Symmetry of knots in solid torus

Similarly, we say a knot in a solid torus (S1 × D2,K ) has symmetry
([α, ε1], ε2) if there exists a self-homeomorphism of the solid torus of class
α that maps the longitude class [λ] to ε1[λ] and restricts to a
self-homeomorphism of K of the class ε2.

α takes the value ±1 or J± that stands for orientation
preserving/reversing homeomorphisms or involutions of the solid torus
S1 × D2, respectively.

ε1, ε2 take the value ±1.

Lemma

Suppose P is a pattern with non-zero winding number. If (S1 × D2,P)
has symmetry ([−1, ε1], ε2), then ε1ε2 = 1.
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Symmetry of satellite knots

Lemma (Hartley)

Suppose P is a pattern and J is a non-trivial prime knot and neither J nor
its mirror image is a companion of P(U). Let α = ±1 or J± and ε = ±1.
Then, (S3,P(J)) has symmetry (α, ε) if and only if (S3, J) has symmetry
(α, ε1) and (S1 × D2,P) has symmetry ([α, ε1], ε) for some ε1 = ±1.

Back to the satellite Miyazaki knot K = P(J). Recall that K
−amphicheiral means that (S3,K ) has symmetry (−1,−1).

Lemma of Hartley implies that (S3, J) has symmetry (−1, ε1) and
(S1 × D2,P) has symmetry ([−1, ε1],−1) for some ε1 = ±1.

Since P is a pattern with non-zero winding number, the lemma in the
previous slide gives that ε1 = −1.

This shows that (S3, J) has symmetry (−1,−1) and hence J is
−amphicheiral.
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Strongly −amphicheiral

Question: Are Miyazaki knots strongly −amphicheiral?

From the discussion in the previous slides, we see that all Miyazaki knots
can be obtained from hyperbolic ones via iterated satellite operations. So
we look for an inductive approach to the question.

Below is a partial result in this direction.

Proposition (Kim-W)

Suppose K = P(J) is a Miyazaki knot with a strongly −amphicheiral
companion J and a pattern of winding number 3. Then K is strongly
−amphicheiral.
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Sketch of the proof

In light of Hartley’s lemma, since J has symmetry (J−,−1), it suffices to
prove that (S1 × D2,P) has symmetry ([J−,−1],−1).

From the previous discussion, P is a fibered, unknotted pattern of winding
number 3. By a result of [Magnus-Peluso, 1967], there are three such
patterns up to isotopy in S1 × D2, corresponding to the closure of
conjugacy class of 3-braids

1 σ1σ2,

2 σ−1
1 σ−1

2

3 σ−1
1 σ2

The first two patterns of P give cable knots K = J3,1 and J3,−1,
respectively, and one can show that K is not Miyazaki.

For the third case, we should observe directly that the closure of the braid
σ−1

1 σ2 has indeed the symmetry ([J−,−1],−1). This finishes the proof.
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More general cases

What happens to a general satellite Miyazaki knot K = P(J)?

The winding number w = 2n + 1 and |w | 6= 1.

The fibered, unknotted pattern P is the closure of a (2n + 1)-braid.
(Hirasawa-Murasugi-Silver 2008)

P = β̂ is fibered for homogeneous braid β, i.e., each standard braid
generator σi appears at least once in β and the exponent on σi has
the same sign in each appearance in the braid word β. (Stallings
1978)

E.g.,
∏2n

i=0 σ
(−1)i

2n−i is a homogeneous 2n + 1-braid.
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An example

Example

Suppose Pn is the closure of a homogeneous (2n + 1)-braid of the form∏2n
i=0 σ

(−1)i

2n−i . It has symmetry ([J−,−1],−1).

Figure: P2 is the closure of a braid of the form σ4σ
−1
3 σ2σ

−1
1 . If we parameterize

the meridional disk and the longitude of the solid torus by z and θ, respectively,
then the map f : (z , θ)→ (−z ,−θ) is the desired orientation reversing involution.
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Consequently, we construct an infinite family of satellite Miyazaki knots,
all of which are strongly −amphicheiral.

Proposition (Kim-W)

Suppose J is the figure-eight knot, and Pn is the closure of a

(2n + 1)-braid of the form
∏2n

i=0 σ
(−1)i

2n−i . Then the satellite knot K = Pn(J)
is Miyazaki and strongly −amphicheiral.
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Question: To what extent could the above discussion be extended to
spatial graphs?
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Thank You

Thank you very much!
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