Enumeration Algorithm for Lattice Model

Seungsang Oh

Korea University

International Workshop on Spatial Graphs 2016 Waseda University, August 5, 2016

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contents

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1 State Matrix Recursion Algorithm

2 Monomer-Dimer Problem (best application)

3 Multiple Self-Avoiding Polygon Enumeration

4 Further Applications in Lattice Statistics

Contents

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1 State Matrix Recursion Algorithm

2 Monomer-Dimer Problem (best application)

3 Multiple Self-Avoiding Polygon Enumeration

④ Further Applications in Lattice Statistics

State matrix recursion algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

State matrix recursion algorithm enumerates 2-dimensional lattice models such as

- Monomer-dimer coverings
- Multiple self-avoiding walks and polygons
- Independent vertex sets
- Quantum knot mosaics

These are famous problems in Combinatorics and Statistical Mechanics studied by topologists, combinatorialists and physicists alike.

State matrix recursion algorithm is divided into three stages:

- Stage 1. Conversion to appropriate mosaics
- Stage 2. State matrix recursion formula
- Stage 3. State matrix analyzing

During this talk, the algorithm will be briefly demonstrated by solving the Monomer-Dimer Problem.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Contents

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1 State Matrix Recursion Algorithm

2 Monomer-Dimer Problem (best application)

3 Multiple Self-Avoiding Polygon Enumeration

④ Further Applications in Lattice Statistics

Monomer-dimer coverings

Monomer-dimer covering in $m \times n$ rectangle on the square lattice $\mathbb{Z}_{m \times n}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where k(t) is the number of with t monomers.

- $D_{m \times n}(1)$ is the number of monomer-dimer coverings.
- $D_{m \times n}(0)$ is the number of pure dimer coverings (i.e., no monomers).

Breakthrough results

[Kasteleyn and Temperley-Fisher 1961] Pure dimer problem for even *mn*

$$\prod_{j=1}^{m} \prod_{k=1}^{n} \sqrt{2\cos\left(\frac{\pi j}{m+1}\right) + 2i\cos\left(\frac{\pi k}{n+1}\right)}$$

[Tzeng-Wu 2003] Single boundary monomer problem for odd *mn* (it has a fixed single monomer on the boundary)

$$\prod_{j=1}^{\frac{m-1}{2}} \prod_{k=1}^{\frac{n-1}{2}} \left[4\cos^2\left(\frac{\pi j}{m+1}\right) + 4\cos^2\left(\frac{\pi k}{n+1}\right) \right]$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Question: How about if we allow many monomers? Generating function?

Monomer-Dimer Theorem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

S

 $D_{m \times n}(z) = (1, 1)$ -entry of $(A_m)^n$

where A_m is a $2^m \times 2^m$ matrix defined by the recurrence relation

$$A_{k} = \begin{bmatrix} zA_{k-1} + \begin{bmatrix} A_{k-2} & \mathbb{O}_{k-2} \\ \mathbb{O}_{k-2} & \mathbb{O}_{k-2} \end{bmatrix} & A_{k-1} \\ A_{k-1} & \mathbb{O}_{k-1} \end{bmatrix}$$

tarting with $A_{0} = \begin{bmatrix} 1 \end{bmatrix}$ and $A_{1} = \begin{bmatrix} z & 1 \\ 1 & 0 \end{bmatrix}$ where \mathbb{O}_{k} is the $2^{k} \times 2^{k}$ zero-matrix.

Note that it is not a closed form solution, but a sparse recurrence algorithm.

Exact enumeration

・ロト・(部・・モ・・モ・ のへぐ

п	$D_{n \times n}(1)$	$(D_{n \times n}(1))^{\frac{1}{n^2}}$
1	1	1.000
2	7	1.627
3	131	1.719
4	10012	1.778
5	2810694	1.811
6	2989126727	1.833
7	11945257052321	1.849
8	179788343101980135	1.860
9	10185111919160666118608	1.869
10	2172138783673094193937750015	1.877
11	1743829823240164494694386437970640	1.882
12	5270137993816086266962874395450234534887	1.887
13	59956919824257750508655631107474672284499736089	1.891

Stage 1. Conversion to monomer-dimer mosaics

Adjacency Rule : Attaching edges of adjacent tiles have the same letter. Boundary state requirement : All boundary edges are labeled with letter a.

Stage 2. State matrix recursion formula

State polynomial : Twelve suitably adjacent 3×3 -mosaics associated with *b*-state aba, *t*-state bab and the trivial *l*- and *r*-states aaa to produce the associated state polynomial $1 + 5z^2 + 5z^4 + z^6$.

State matrix $A_{m\times n}$ for the set of suitably adjacent $m \times n$ -mosaics is a $2^m \times 2^m$ matrix (a_{ij}) where a_{ij} is the state polynomial associated to *i*-th *b*-state, *j*-th *t*-state, and the trivial *l*- and *r*-states. (Trivial state condition is needed for the boundary state requirement)

We arrange 2^m states of length *m* in the lexicographic order.

For example, (3,6)-entry of $A_{3\times 3}$ is $a_{3,6} = 1 + 5z^2 + 5z^4 + z^6$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Recursion strategy to find the state matrix $A_{m \times n}$.

- **1.** Find the starting state matrices A_1 and B_1 for 1×1 -mosaics.
- 2. Find the bar state matrices A_k and B_k for suitably adjacent $k \times 1$ -mosaics (or bar mosaics) by attaching a mosaic tile recursively on the right side.
- 3. Find the state matrix $A_{m \times k}$ for suitably adjacent $m \times k$ -mosaics by attaching a bar mosaic of length *m* on the top side.

Summary

First, we get the recursive relation from the bar state matrix recursion lemma

$$A_{k} = \begin{bmatrix} zA_{k-1} + B_{k-1} & A_{k-1} \\ A_{k-1} & \mathbb{O}_{k-1} \end{bmatrix} \text{ and } B_{k} = \begin{bmatrix} A_{k-1} & \mathbb{O}_{k-1} \\ \mathbb{O}_{k-1} & \mathbb{O}_{k-1} \end{bmatrix}$$

starting with $A_{0} = \begin{bmatrix} 1 \end{bmatrix}$ and $B_{0} = \begin{bmatrix} 0 \end{bmatrix}$.

Then, we have the state matrix from the state matrix multiplication lemma

$$A_{m \times n} = (A_m)^n.$$

Stage 3. State matrix analyzing

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

Monomer-dimer generating function w.r.t. the number of monomers

 $D_{m \times n}(z) = (1,1)$ -entry of $A_{m \times n}$.

Monomer-Dimer Theorem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Theorem

 $D_{m \times n}(z) = (1, 1) \text{-entry of } (A_m)^n$

where A_m is a $2^m \times 2^m$ matrix defined by the recurrence relation

$$A_{k} = \begin{bmatrix} zA_{k-1} + \begin{bmatrix} A_{k-2} & \mathbb{O}_{k-2} \\ \mathbb{O}_{k-2} & \mathbb{O}_{k-2} \end{bmatrix} & A_{k-1} \\ A_{k-1} & \mathbb{O}_{k-1} \end{bmatrix}$$

starting with $A_0 = \begin{bmatrix} 1 \end{bmatrix}$ and $A_1 = \begin{bmatrix} z & 1 \\ 1 & 0 \end{bmatrix}$ where \mathbb{O}_k is the $2^k \times 2^k$ zero-matrix.

Contents

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1 State Matrix Recursion Algorithm

2 Monomer-Dimer Problem (best application)

3 Multiple Self-Avoiding Polygon Enumeration

④ Further Applications in Lattice Statistics

Self-avoiding polygons

▲□▶▲□▶▲□▶▲□▶ □ のQで

Self-avoiding polygon (SAP) on the square lattice \mathbb{Z}^2

Finding p_n is the central unsolved problem during last 70 years in Combinatorics and Statistical Mechanics.

There are many numerical datas, but few mathematically proved results.

Breakthrough results

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

[Hammersley 1957] The limit $\mu = \lim (p_n)^{\frac{1}{n}}$ exists.

 $\mu = 2.638158530323 \pm 2 \times 10^{-12}$: best estimate on \mathbb{Z}^2 during 50 years.

[Duminil-Copin and Smirnov 2012, Annals of Math.] $\mu = \sqrt{2 + \sqrt{2}}$ on the hexagonal lattice \mathbb{H}^2 (easier than on \mathbb{Z}^2).

Nobody expects that there will be a closed form of p_n .

Multiple self-avoiding polygons

Multiple self-avoiding polygon (MSAP) in $\mathbb{Z}_{m \times n}$

 $p_{m \times n}$ = number of MSAPs in $\mathbb{Z}_{m \times n}$ (not up to translations)

W

Theorem

$$p_{m \times n} = (1, 1) \text{-entry of } (A_m)^n - 1$$

where the $2^m \times 2^m$ matrix A_m is defined by
 $A_{k+1} = \begin{bmatrix} A_k & B_k \\ B_k & A_k \end{bmatrix}$ and $B_{k+1} = \begin{bmatrix} B_k & A_k \\ A_k & \mathbb{O}_k \end{bmatrix}$
starting with $A_0 = \begin{bmatrix} 1 \end{bmatrix}$ and $B_0 = \begin{bmatrix} 0 \end{bmatrix}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

MSAPs in the 1-slab square lattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Multiple self-avoiding polygons (links) in the 1-slab square lattice $\mathbb{Z}_{m \times n \times 2}$ (2 layers of the planes)

Conversion to 1-slab MSAP mosaics by using 65 mosaic tiles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

MSAP enumeration in $\mathbb{Z}_{m \times n \times 2}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

st

The number of MSAPs in the 1-slab square lattice $\mathbb{Z}_{m \times n \times 2}$ is

(1, 1)-entry of $(A_m)^n - 1$

where the $4^m \times 4^m$ matrix A_m is defined by

$$A_{k+1} = \begin{bmatrix} A_k + D_k & B_k + C_k & B_k + C_k & A_k + D_k \\ B_k + C_k & A_k & A_k + D_k & C_k \\ B_k + C_k & A_k + D_k & A_k & B_k \\ A_k + D_k & C_k & B_k & A_k \end{bmatrix}, B_{k+1} = \begin{bmatrix} B_k + C_k & A_k & A_k + D_k & C_k & 0_k \\ A_k + D_k & C_k & B_k & A_k \\ C_k & 0_k & A_k & 0_k \\ C_k & 0_k & A_k & 0_k \end{bmatrix},$$
$$C_{k+1} = \begin{bmatrix} B_k + C_k & A_k + D_k & A_k & B_k \\ A_k + D_k & C_k & B_k & A_k \\ A_k & B_k & 0_k & 0_k \\ B_k & A_k & 0_k & 0_k \end{bmatrix} and D_{k+1} = \begin{bmatrix} A_k + D_k & C_k & B_k & A_k \\ C_k & 0_k & A_k & 0_k \\ B_k & A_k & 0_k & 0_k \end{bmatrix},$$
arting with $A_0 = \begin{bmatrix} 1 \end{bmatrix} and B_0 = C_0 = D_0 = \begin{bmatrix} 0 \end{bmatrix}.$

- The number of MSAPs in $\mathbb{Z}_{7 \times 60 \times 2}$ is $5.345706 \cdots \times 10^{261}$.

Links in the 3-dimensional cubic lattice

Links in the 3-dimensional cubic lattice $\mathbb{Z}_{l \times m \times n}$ (not up to translations and ambient isotopies)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Contents

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1 State Matrix Recursion Algorithm

2 Monomer-Dimer Problem (best application)

3 Multiple Self-Avoiding Polygon Enumeration

4 Further Applications in Lattice Statistics

Different regular lattices

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Hexagonal (honeycomb) lattice $\mathbb{H}_{m \times n}$ (MSAP model)

Different regular lattices

Triangular lattice $\mathbb{T}_{m \times n}$ (Monomer-dimer model)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Different regular lattices

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

1-slab square lattice $\mathbb{Z}_{m \times n \times 2}$ (Multiple self-avoiding polygon (link) model)

Polymer model

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Monomer-dimer-trimer-tetramer covering

Polyomino model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Monomino-domino-tromino tiling

Independent vertex model

Independent vertex sets

independent vertex set with 3-nb exclusion

▲□▶▲□▶▲□▶▲□▶ □ のQで

Quantum knot model

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Quantum knot mosaic

with 11 knot mosaic tiles as follows

Squared rectangle model

Tiling a rectangle by squares with various integer sizes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Tetris model

Tetris configuration by 7 tetrominoes

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●