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Let M be an oriented 3-manifold and ξ a 2-plane field on M.
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Let M be an oriented 3-manifold and ξ a 2-plane field on M.
We say ξ is a contact structure on M if

ξ = kerα

for some 1−form α satisfying α ∧ dα > 0.

Example: On R3, the 1−form α = dz − ydx gives the standard
contact structure on R3, ξstd .

Planar Legendrian Spatial Graphs



Contact Structures Legendrian Knots Legendrian graphs Results

z

y

x

ξstd = ker(dz − ydx)
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Let M be an oriented 3-manifold and ξ a 2-plane field on M.
We say ξ is a contact structure on M if

ξ = kerα

for some 1−form α satisfying α ∧ dα > 0.

Example: On R3, the 1−form α = dz − ydx gives the standard
contact structure on R3, ξstd .

Contact structures can be

I overtwisted - contains an overtwisted disk

I tight - does not contain an overtwisted disk
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Overtwisted disk
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Let M be an oriented 3-manifold and ξ a 2-plane field on M.
We say ξ is a contact structure on M if

ξ = kerα

for some 1−form α satisfying α ∧ dα > 0.

Example: On R3, the 1−form α = dz − ydx gives the standard
contact structure on R3, ξstd .

Contact structures can be

I overtwisted - contains an overtwisted disk (well understood)

I tight - does not contain an overtwisted disk (interesting)
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ξstd = ker(dz − ydx) = Span{ ∂
∂y ,

∂
∂x + y ∂

∂z } (tight)
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A knot γ ⊂ (S3, ξstd) is called Legendrian if for all p ∈ γ and ξp
the contact plane at p, Tpγ ⊂ ξp.

Legendrian
unknot
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Front projections (on the xz−plane):

I Front projections of Legendrian knots do not have vertical
tangencies (since y = dz/dx).

I At each crossing the overstrand is always the one with smaller
slope (since the y−axis points away from the viewer).

unknot
rh-trefoil
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ξstd = ker(dz − ydx)
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Two generic front projections of a Legendrian knot are related by:

Reidemeister moves

I

II

III
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Classical invariants of Legendrian knots:

I the Thurston-Bennequin number: tb

I the rotation number: rot
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The Thurston-Bennequin number measures the amount of
twisting of the contact planes along the knot and does not depend
on the chosen orientation of K .

To compute tb(K ):

I take non-zero vector field v transverse to ξ

I take K ′, the push-off of K in the direction of v .

tb(K ) = lk(K ,K ′).

In the front projection:

tb(K ) = writhe − 1
2 #cusps

writhe = signed count of crossings in the projection
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The rotation number does depend on orientation. Let T be a
non-zero vector field tangent to K pointing in the direction of the
orientation on K .

Then, rot(K ) = the winding number of T about the origin.

(in the trivialization ξ|K = K × R2 induced by the trivialization of
ξ|Σ, K = ∂Σ)

Planar Legendrian Spatial Graphs



Contact Structures Legendrian Knots Legendrian graphs Results

The rotation number does depend on orientation. Let T be a
non-zero vector field tangent to K pointing in the direction of the
orientation on K .

Then, rot(K ) = the winding number of T about the origin.

(in the trivialization ξ|K = K × R2 induced by the trivialization of
ξ|Σ, K = ∂Σ)

In the front projection:

rot(K ) =
1

2
(#down cusps −#up cusps)
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unknot

stabilized unknot
rh-trefoil

tb = −1
rot = 0

tb = −2
rot = −1

tb = 1
rot = 0

tb(K ) = writhe − 1
2 #cusps rot(K ) = 1

2 (#down cusps −#up cusps)
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Theorem (Eliashberg)

If K is a Legendrian knot in (R3, ξstd) and Σ a Seifert surface for
K , then

tb(K ) + |rot(K )| ≤ −χ(Σ).

I if K is the unknot then tb(K ) ≤ −1 (sharp bound)

I tb it can be made arbitrary small within the same topological
knot class by adding stabilizations
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A spatial graph is an embedding of a graph in S3.

A Legendrian graph in (R3, ξstd) is an embedded graph that is
everywhere tangent to the contact planes.

I have been used in proofs of important theorems:

I Giroux: correspondence between open book decompositions
and contact structures of a 3-manifold

I Eliashberg and Fraser: tb and rot determine the Legendrian
unknot
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Theorem (O’D, Pavelescu)

Any spatial graph in R3 can be Legendrian realized in (S3, ξstd).

Front projection of a Legendrian graph.

front projection near v
ξv
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Two generic front projections of a Legendrian graph are related by:

Reidemeister moves

I

II

III
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Moves given by mutual positions of edges and vertices
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We extend tb and rot to Legendrian graphs.

We first define the invariants for piecewise smooth Legendrian
knots (i.e. cycles in a Legendrian graph).

For a Legendrian graph Γ:

tb(Γ) = ordered set of the tbs of the cycles of Γ.

rot(Γ) = ordered set of the rots of the oriented cycles of Γ.

Planar Legendrian Spatial Graphs



Contact Structures Legendrian Knots Legendrian graphs Results

Certain types of Legendrian knots and links are determined by the
classical invariants tb and rot in (S3, ξstd):

I the unknot (Eliashberg, Fraser)

I torus knots and, figure-eight knot (Etnyre, Honda)

I links consisting of the unknot and a cable of that unknot
(Ding, Geiges)

Such knots are called Legendrian simple.

tb = −1
rot = 0

tb = −2
rot = −1
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Are there graphs that are Legendrian simple? (i.e. Will the
invariants tb and rot determine the Legendrian type of a graph?)

A Legendrian graph is called topologically trivial if it is ambient
isotopic to a planar graph.

the lollipop graph the handcuff graph
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Work with Elena Pavelescu:

I A pair (tb, rot) determines exactly two Legendrian classes for
the lollipop graph.

I A pair (tb, rot) determines exactly four Legendrian classes for
the handcuff graph.

(a) (b)

(c) (d)

U1 U2 U1 U2

U1 U2 U1 U2
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Work with Elena Pavelescu:

The two θ-graphs have the same invariants but they are not
Legendrian isotopic.

G G ′

e1

e2

e3

f1

f2

f3

Key: The signed cyclic order of the edges around a vertex is
unchanged under Legendrian isotopy.
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Let g be a Legendrian graph. Roughly, a ribbon for g is a compact
oriented surface Rg containing g in its interior such that:

1. the contact structure is tangent to Rg along g ,

2. transverse to R r g , and

3. ∂Rg is a transverse knot or link.

The contact framing Rg is the underlying unoriented surface of the
Legendrian ribbon.
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The Legendrian ribbon Rg

Rg

Features of Rg of a Legendrian graph

I invariant under Legendrian isotopy

I contains tb(g)

I contains the signed cyclic order of the
edges at the vertices

The contact framing Rg contains tb(g) and
the cyclic order of the edges at the vertices.
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The Legendrian ribbon Rg

Rg
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Theorem (Lambert-Cole, O’D)

Let G be a trivalent planar graph. The pair (Rg , rot(g)) is a
complete set of invariants for topologically trivial Legendrian
embeddings g : G → S3.

g g ′

e1

e2

e3

f1

f2

f3
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Theorem (Lambert-Cole, O’D)

Let G be a trivalent planar graph. For topologically trivial
Legendrian embeddings of G :

1. if G contains K4 or ∆2 as a minor, then the pair (Rg , rot) is a
complete set of invariants

2. if G is 3-connected, the pair (tb, rot) is a complete set of
invariants.
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Thank you!
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Convex Surface Theory

Let G1,G2 be Legendrian graphs lying on convex spheres S1,S2 in
(S3, ξstd). Suppose that there is a diffeomorphism i : S1 → S2 that
sends G1 diffeomorphically to G2 and the dividing set ΓS1

diffeomorphically to the dividing set ΓS2 . Then G1 and G2 are
Legendrian isotopic in S3.
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