Combinatorics of intrinsic linking

SERGEY MELIKHOV

Steklov Math Institute (Moscow)

Tokyo, August 2016



Theorem (Kuratowski 1929; Pontriagin '28, O.Frink-P.A.Smith '30)
A graph embeds in the plane iff it contains no subgraph homeomorphic

to K5 or K3’3.




Remark (Wagner, 1937). An equivalent statement is:
Theorem (Kuratowski 1929; Pontriagin '28, O.Frink-P.A.Smith '30)
A graph embeds in the plane iff it contatns—no-subgraph-homeomorphic-

to K5 or K3 3. has no minor isomorphic

K K33

Y

A minor of a graph GG is a graph obtained from a subgraph of G by a
sequence of edge contractions.
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An embedding of a graph into R” is knotless if (the image of) every cycle
Is unknotted, and panelled if every cycle bounds a disk whose interior is
disjoint from the graph.

An embedding of a polyhedron into R™ is linkless if for every two disjoint
closed subpolyhedra of the image, one is contained in an m-ball disjoint
from the other one.
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Theorem (Robertson—Seymour—Thomas, 1995)

(a) If a graph embeds in R3 so that no pair of its disjoint cycles is linked
with an odd linking number, then it admits a panelled embedding in R?.
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Is unknotted, and panelled if every cycle bounds a disk whose interior is
disjoint from the graph.

In the sense of topology: a space triangulated by a simplicial complex.

An embedding of aQpolyhedrom into R™ is linkless if for every two disjoint
closed subpolyhedra of the image, one is contained in an m-ball disjoint

from the other one.

Lemma. Panelled = linkless and (trivially) knotless

Theorem (Robertson—Seymour—Thomas, 1995)

(a) If a graph embeds in R3 so that no pair of its disjoint cycles is linked
with an odd linking number, then it admits a panelled embedding in R?.

(b) If two panelled embeddings of a graph in R> are inequivalent then
they differ already on a subgraph, homeomorphic to K5 or K3 3.

(c) A graph admits a linkless embedding in R if and only if it has no

minor among the seven graphs known as the Petersen family.
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A cell complex is a finite CW-complex whose attaching maps are PL
embeddings. It is atomic if inclusions of cells are determined by inclusions
of their vertex sets. (Cf. graphs without loops and multiple edges.)

Note: () is NOT a cell.

A finite cell complex B is dichotomial if it is atomic, and for each cell A
of B, there exists another (the “opposite”) cell A of B whose vertices are
precisely all the vertices of B that are not in A.

Example. The boundary of a simplex is dichotomial.

In fact, every dichotomial simplicial complex is of this form.

Theorem 1. Every dichotomial cell complex is PL homeomorphic to a
sphere of some dimension.

T here exist precisely two dichotomial 3-spheres; their 1-skeleta are K-
and Kg,g.

There exist precisely six dichotomial 4-spheres; their 1-skeleta are
precisely the graphs of the Petersen family apart from Ky 4 \ e.

E5xan§ple. K+ is the 1-skeleton of OA*, and Kg is the 1-skeleton of OA®.
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which form a 2-sphere ...

which we glue up by a 3-cell.
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PART 2
HIGHER DIMENSIONS...

?
Next simplest case: n-polyhedron — R?".

If K and L are subcomplexes of a cell complex M, the deleted join
K ® L is a subcomplex of the join K * L consisting of the joins A x B for
each pair of disjoint cells A € K and B € L.

An m-obstructor is an atomic cell complex K with K ® K = §™t1,

Theorem (Flores, 1933) Every m-obstructor does not embed in R™.

Proof: Uses the Borsuk—Ulam theorem (1932).

8- 4



Theorem (Flores, 1935) The n-skeleton of A*" 2 s a 2n-obstructor.

A modern proof uses a "combinatorial Alexander duality” .



Theorem (Flores, 1935) The n-skeleton of A*" 2 s a 2n-obstructor.
A modern proof uses a "combinatorial Alexander duality” .

Example. The 0-skeleton of A is the 3-point set. >%< gl

~



Theorem (Flores, 1935) The n-skeleton of A*" 2 s a 2n-obstructor.

A modern proof uses a "combinatorial Alexander duality” .

Example. The 0-skeleton of A is the 3-point set. >%< gl

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is
a (k + [ + 2)-obstructor.



Theorem (Flores, 1935) The n-skeleton of A*" 2 s a 2n-obstructor.

A modern proof uses a "combinatorial Alexander duality” .

Example. The 0-skeleton of A is the 3-point set. >%< gl

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is
a (k + [ + 2)-obstructor.

Corollary (van Kampen, 1932) The n-skeleton F™ of A%"+2
(“generalized K5") and the join F° x ---x FY of n + 1 copies of the
3-point set (“generalized K3 3") do not embed in R*™.



Theorem (Flores, 1935) The n-skeleton of A*" 2 s a 2n-obstructor.

A modern proof uses a "combinatorial Alexander duality” .

Example. The 0-skeleton of A is the 3-point set. >%< gl

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is
a (k + [ + 2)-obstructor.

Corollary (van Kampen, 1932) The n-skeleton F™ of A%"+2
(“generalized K5") and the join F° x ---x FY of n + 1 copies of the
3-point set (“generalized K3 3") do not embed in R*™.

Addendum (Griinbaum, 1969) More generally, each n-dimensional join
of the type F™ x ... x F™ does not embed in R*".
But every its proper subcomplex embeds in R*" (explicitly).



Theorem (Flores, 1935) The n-skeleton of A*" 2 s a 2n-obstructor.

A modern proof uses a "combinatorial Alexander duality” .

Example. The 0-skeleton of A is the 3-point set. >%< gl

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is
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Corollary (van Kampen, 1932) The n-skeleton F™ of A%"+2
(“generalized K5") and the join F° x ---x FY of n + 1 copies of the
3-point set (“generalized K3 3") do not embed in R*™.

Addendum (Griinbaum, 1969) More generally, each n-dimensional join
of the type F™ x ... x F™ does not embed in R*".
But every its proper subcomplex embeds in R*" (explicitly).

Theorem (Sarkaria, 1991) The only 2n-obstructors among simplicial
complexes are n-dimensional joins of the type F™! % - - - x F™k,
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Remark. Probably, there are many more. Their 1-skeleta are related to
(but different from) van der Holst's “Heawood family” of 78 graphs,
which all have Colin de Verdiere's parameter u = 6.

(c) All 2n-obstructors are n-skeleta of dichotomial (2n + 1)-spheres.

Example. Not only ', but every n-dimensional join F"™! x ... x F™* |s
the n-skeleton of some (explicit) dichotomial (2n + 1)-sphere.
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o K: cell complex )
o If S is a subcomplex of K, let .S be the subcomplex of K consisting of
all cells of K disjoint from S.
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o K: cell complex )
o If S is a subcomplex of K, let .S be the subcomplex of K consisting of
all cells of K disjoint from S.

e K®K: the union of K ® K and cones of the form C(S * S), where S

runs over all subcomplexes of K such that H"(S) ® H"(S) is nonzero
(< not all maps S xS — S%"*! are null-homotopic).

Theorem 3. If K is an n-dimensional cell complex, TFAE:

(i) K is linklessly embeddable in R#"*1:

(i) there exists a Z/2-map K®K — S§27*1

(iii) an odd-dimensional version of the van Kampen obstruction,
e(N)?" 2 ¢ H?""2(K®K/Zs), vanishes.
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o K: cell complex )
o If S is a subcomplex of K, let .S be the subcomplex of K consisting of
all cells of K disjoint from S.

e K®K: the union of K ® K and cones of the form C(S * S), where S

runs over all subcomplexes of K such that H"(S) ® H"(S) is nonzero
(< not all maps S xS — S%"*! are null-homotopic).

Theorem 3. If K is an n-dimensional cell complex, TFAE:

(i) K is linklessly embeddable in R#"*1:

(i) there exists a Z/2-map K®K — S§27*1

(iii) an odd-dimensional version of the van Kampen obstruction,
e(N)?" 2 ¢ H?""2(K®K/Zs), vanishes.

Theorem 4. If K is the n-skeleton of a dichotomial (2n + 2)-sphere,
then K®K =2 S?"+2_ Consequently K does not linklessly embed in
R27+1 but all its proper subpolyhedra do.

Example (Lovasz-Schrijver, Taniyama). The n-skeleton of A*"*?
does not linklessly embed in R?"?+1,
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e n-circuit: an n-polyhedron M such that H" (M \ {x}) = 0 for every
re M (= H"(M) is cyclic).

e n-circuit with boundary: an n-polyhedron M along with an

(n — 1)-dimensional subpolyhedron OM such that M /OM is an n-circuit.

Theorem 5. Suppose that P is an n-polyhedron, and @ is an

(n — 1)-dimensional subpolyhedron of P such that the closure of every
component of P\ () is an n-circuit with boundary.

In part (a), assume further that every pair of disjoint singular

(n — 1)-circuits in @ bounds disjoint singular n-circuits in P.

(a) @ linklessly embeds in S*"~1 «— P U CQ embeds in S?".
(b) P embeds in S°" < P U CQ linklessly embeds in S%"*1,
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e n-circuit: an n-polyhedron M such that H" (M \ {x}) = 0 for every
re M (= H"(M) is cyclic).

e n-circuit with boundary: an n-polyhedron M along with an
(n — 1)-dimensional subpolyhedron OM such that M /OM is an n-circuit.

Theorem 5. Suppose that P is an n-polyhedron, and @ is an

(n — 1)-dimensional subpolyhedron of P such that the closure of every
component of P\ () is an n-circuit with boundary.

In part (a), assume further that every pair of disjoint singular

(n — 1)-circuits in @ bounds disjoint singular n-circuits in P.

(a) @ linklessly embeds in S*"~1 «— P U CQ embeds in S?".

(b) P embeds in S°" < P U CQ linklessly embeds in S%"*1,

Van der Holst (2006): (b), n =1 and much of (a), n =2
Robertson-Seymor—Thomas (1993) (b), =, n=1
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An edge contraction is admissible if the contracted edge is not contained
In an isomorphic copy of Ks3.

Inadmissible contraction
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An edge contraction is admissible if the contracted edge is not contained
In an isomorphic copy of Ks3.

Inadmissible contraction

Lemma. H is a minor of G <= H Is obtained from a subgraph of GG by
a sequence of admissible edge contractions.

Lemma. If G — R? and H is obtained
from G by an admissible edge contraction,
then H — R?.

T cell-like
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An edge contraction is admissible if the contracted edge is not contained
In an isomorphic copy of Ks3.

Inadmissible contraction

Lemma. H is a minor of G <= H Is obtained from a subgraph of GG by
a sequence of admissible edge contractions.

Lemma. If G — R? and H is obtained
from G by an admissible edge contraction,
then H — R?.

Corollary. If G — R? and H is a minor of G,
then H — R?.

T cell-like
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An edge contraction is admissible if the contracted edge is not contained
In an isomorphic copy of Ks3.

Inadmissible contraction

Lemma. H is a minor of G <= H Is obtained from a subgraph of GG by
a sequence of admissible edge contractions.

Lemma. If G — R? and H is obtained
from G by an admissible edge contraction,
then H — R?.

Corollary. If G — R? and H is a minor of G,
then H — R?.

T cell-like

It is the definition of a minor via admissible contractions that will
generalize to higher dimensions: admissible contraction ~~ zipping.
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PART 3

DIGRESSION: COMBINATORICS

OF COLLAPSING
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Collapsing

Elementary collapse:

(n — 1)-ball in the boundary of B
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Collapsing

A polyhedron P elementarily collapses onto a subpolyhedron (@ if
P = Q U B, where the pair (B, BN Q) is homeomorphic to (A", A"~1)
for some n. Here A" is the n-simplex and A"~ ! is its facet.

(n — 1)-ball in the boundary of B

I
> homeomorphism

n-ball B — . Lo
An—l
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Collapsing

A polyhedron P elementarily collapses onto a subpolyhedron (@ if
P = Q U B, where the pair (B, BN Q) is homeomorphic to (A", A"~1)
for some n. Here A" is the n-simplex and A"~ ! is its facet.

(n — 1)-ball in the boundary of B

I
> homeomorphism

n-ball B — . Lo
An—l

A collapse is a finite chain of elementary collapses.

A polyhedron is collapsible if it collapses onto a point.
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Bing's house with two rooms

e B is not collapsible, because “there’s nowhere to start from”
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If P collapses onto (), clearly there is a deformation retraction P — ().
In particular, P and () are homotopy equivalent.
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Bing's house with two rooms

e B is not collapsible, because “there’s nowhere to start from”

e [he 3-ball collapses onto a copy of B

If P collapses onto (), clearly there is a deformation retraction P — ().
In particular, P and () are homotopy equivalent.

collapsible = contractible

£

Bl iIs homotopy equivalent to the 3-ball, i.e. contractible
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Combinatorial characterizations of collapsibility

A simplicial complex K elementarily simplicially collapses onto a
subcomplex L if K = LU A, where A is a simplex of K and
LNA=0A\ B, where B is a facet of A.

A simplicial collapse is a finite chain of elementary simplicial collapses.

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it
can be triangulated by a simplicial complex that is simplicially collapsible.

L A\RB
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Combinatorial characterizations of collapsibility

A simplicial complex K elementarily simplicially collapses onto a
subcomplex L if K = LU A, where A is a simplex of K and
LNA=0A\ B, where B is a facet of A.

A simplicial collapse is a finite chain of elementary simplicial collapses.

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it
can be triangulated by a simplicial complex that is simplicially collapsible.

I A \ B e Two new characterizations:

1) In terms of zipping of posets

2) In terms of contructible posets

A simplicial complex, and more generally a cell complex can be
reconstructed from, and so will be identified with, the poset of its
nonempty faces.
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Constructible posets

We call a poset P constructible if either P has a greatest element or
P =Q UR, where () and R are order ideals (that is, if p < q where
g € Q then p € Q; and similarly for R), each of Q, Rand QN R is
constructible, and every maximal element of () N R is covered by a
maximal element of () and by a maximal element of R.

For face posets of simplicial complexes (including
the empty face!) this is Hochster's 1972 definition.
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We call a poset P constructible if either P has a greatest element or
P =Q UR, where () and R are order ideals (that is, if p < q where
g € Q then p € Q; and similarly for R), each of Q, Rand QN R is
constructible, and every maximal element of () N R is covered by a
maximal element of () and by a maximal element of R.

For face posets of simplicial complexes (including /3,%1\
the empty face!) this is Hochster's 1972 definition. = 2 o) 2
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Example (Hachimori, 1998): A non-collapsible > !
contractible polyhedron can be triangulated by a 0 1 6 o
constructible simplicial complex. 3 1
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Constructible posets

We call a poset P constructible if either P has a greatest element or
P =Q UR, where () and R are order ideals (that is, if p < q where
g € Q then p € Q; and similarly for R), each of Q, Rand QN R is
constructible, and every maximal element of () N R is covered by a
maximal element of () and by a maximal element of R.

For face posets of simplicial complexes (including /3,%1\
the empty face!) this is Hochster's 1972 definition. = 2 o) 2
8 5
Example (Hachimori, 1998): A non-collapsible > !
contractible polyhedron can be triangulated by a 0 1 6 o
constructible simplicial complex. 3 1

Theorem 6. The following are equivalent for a polyhedron X :
(i) X is collapsible;

(ii) X is triangulated by a simplicial complex whose dual poset is
constructible;

( Té X 3()'s cellulated by a cell complex whose dual poset is constructible.



Zipping
Let P be a poset. Let p € P cover incomparable elements q,r € P, where

e every s < p with s # ¢, r satisfies s < g and s < r, and
o if s>qand s >rthen s>np.

Then P elementarily zips onto the quotient of P by ({p,q, 7}, <).
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Lemma. /f a cell complex zips onto a poset L, then L is a cell complex.
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Zipping
Let P be a poset. Let p € P cover incomparable elements q,r € P, where

e every s < p with s # ¢, r satisfies s < g and s < r, and
e if s>qgands>rthen s>np.

Then P elementarily zips onto the quotient of P by ({p,q, 7}, <).

- f/

A zipping of posets is a chain of elementary zippings.

(Introduced by N. Reading, 2004) *

Lemma. /f a cell complex zips onto a poset L, then L is a cell complex.

Theorem 7. A cell complex K zips onto a point if and only if the dual
poset 11(5 IS constructible.

19 -



PART 4

GRAPHS AND MINORS
IN HIGHER DIMENSIONS

20



Problem |. Find a higher-dimensional generalization of the Kuratowski
graph planarity crterion.
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A cell complex K is called Cohen—Macaulay if K and its links of cells are

acyclic in all dimensions except the maximal one. Equivalently,
H;(K)=0=H;(K, K\ p) for all ¢t < dim K and every point p € K.

21 -2



Problem |. Find a higher-dimensional generalization of the Kuratowski
graph planarity crterion.

"Higher-dimensional graphs”: Cohen—Macaulay cell complexes.

A cell complex K is called Cohen—Macaulay if K and its links of cells are
acyclic in all dimensions except the maximal one. Equivalently,

H,(K)=0= H;(K, K\ p) for all i < dim K and every point p € K.

Lemma. If K is an n-polyhedron, n # 2, embeddable in R*"™, then K
embeds in a Cohen-Macaulay n-polyhedron, embeddable in R*".

21 -3



Problem |. Find a higher-dimensional generalization of the Kuratowski
graph planarity crterion.

"Higher-dimensional graphs”: Cohen—Macaulay cell complexes.

A cell complex K is called Cohen—Macaulay if K and its links of cells are
acyclic in all dimensions except the maximal one. Equivalently,

H,(K)=0= H;(K, K\ p) for all i < dim K and every point p € K.

Lemma. If K is an n-polyhedron, n # 2, embeddable in R*"™, then K
embeds in a Cohen-Macaulay n-polyhedron, embeddable in R*".

But does looking at subcomplexes suffice? Why did R-S-T need minors?

21 - 4



Problem |. Find a higher-dimensional generalization of the Kuratowski
graph planarity crterion.

"Higher-dimensional graphs”: Cohen—Macaulay cell complexes.

A cell complex K is called Cohen—Macaulay if K and its links of cells are
acyclic in all dimensions except the maximal one. Equivalently,

H;(K)=0=H;(K, K\ p) for all ¢t < dim K and every point p € K.
Lemma. If K is an n-polyhedron, n # 2, embeddable in R*"™, then K
embeds in a Cohen-Macaulay n-polyhedron, embeddable in R*".

But does looking at subcomplexes suffice? Why did R-S-T need minors?

Lemma. Suppose that a compact n-polyhedron P PL embeds in R™,
and f : P — () is a PL map. Then ) embeds in R™ if either

(a) f is collapsible (=has collapsible point-inverses), or

(b) f is cell-like (=has contractible point-inverses) and m — n > 3.

Remark. It is obvious that () embeds in R™ if ) = P/C', where C'is a
collapsible subpolyhedron of P. This can be iterated: (P/C1)/C5, etc.

Letnmg. Collapsible maps preserve Cohen—Macaulayness.



Example. For each n > 2 there exist infinitely many Cohen—Macaulay
pairwise non-homeomorphic n-polyhedra K1, Ko, ... such that each K,
does not embed in R*" but every its proper subpolyhedron does.
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onto the wedge of r 4+ 1 balls CY, ..., C.
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Example. For each n > 2 there exist infinitely many Cohen—Macaulay
pairwise non-homeomorphic n-polyhedra K1, Ko, ... such that each K,
does not embed in R*" but every its proper subpolyhedron does.

Let & be the n-skeleton of AZ"+2) say. It is
Cohen-Macaulay. Pick an (n — 1)-cell A in K whose
neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages
C', with the boundary spheres in the binding A.

Now shrink each of these r balls to a point. The
result is a new polyhedron K., where C' is shrunk
onto the wedge of r 4+ 1 balls CY, ..., C.

Since K, is a collapsible image of K, all proper
subpolyhedra of K, embed in R*".

Also K, does not embed in R?" since it admits a
collapsible map onto K': shrink the wedge of the
bﬁgs 06’ ..., (. to a point.



A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.
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A cell complex L will be called a minor of a cell complex K if some
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Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

23 -2



A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Remark. A zipping induces a collapsible map between the cell

complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks—Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1, K5, ... such that
each K; does not embed in R?™ but every its proper minor does.
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Remark. A zipping induces a collapsible map between the cell
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks—Nevo). For each n >.1 th @}g‘i"@yr\vise
non-homeomorphic _dinﬁWMa&i 1, Ko, ... such that
each K choct e@g but every its proper minor does.

Problem Il. Given an n, are there only finitely many n-dimensional
Cohen—Macalulay cell complexes that do not embed in R?" while all their
proper minors embed? (Yes = a higher-dim. Kuratowski theorem.)
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks—Nevo). For each n >.1 th péx‘i"a)Yr\vise
non-homeomorphic —dinﬁwwr\aefe 1, Ko, ... such that
each K Nso@ e@@ but every its proper minor does.

Problem Il. Given an n, are there only finitely many n-dimensional
Cohen—Macalulay cell complexes that do not embed in R?" while all their
proper minors embed? (Yes = a higher-dim. Kuratowski theorem.)

Theorem 8. If K is the n-skeleton of a dichotomial (2n + 1)-sphere,
n # 2 (resp. of a dichotomial (2n + 2)-sphere), then all its proper minors
embed in R?™ (resp. linklessly embed in R*"*1).
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