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Theorem (Kuratowski 1929; Pontriagin ’28, O.Frink-P.A.Smith ’30)
A graph embeds in the plane iff it contains no subgraph homeomorphic
to K5 or K3,3.

K5 K3,3



2 - 2

Theorem (Kuratowski 1929; Pontriagin ’28, O.Frink-P.A.Smith ’30)
A graph embeds in the plane iff it contains no subgraph homeomorphic
to K5 or K3,3.

K5 K3,3

has no minor isomorphic

A minor of a graph G is a graph obtained from a subgraph of G by a
sequence of edge contractions.

Remark (Wagner, 1937). An equivalent statement is:
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An embedding of a graph into R3 is knotless if (the image of) every cycle
is unknotted, and panelled if every cycle bounds a disk whose interior is
disjoint from the graph.

An embedding of a polyhedron into Rm is linkless if for every two disjoint
closed subpolyhedra of the image, one is contained in an m-ball disjoint
from the other one.
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An embedding of a graph into R3 is knotless if (the image of) every cycle
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minor among the seven graphs known as the Petersen family.

(b) If two panelled embeddings of a graph in R3 are inequivalent then
they differ already on a subgraph, homeomorphic to K5 or K3,3.
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A cell complex is a finite CW-complex whose attaching maps are PL
embeddings. It is atomic if inclusions of cells are determined by inclusions
of their vertex sets. (Cf. graphs without loops and multiple edges.)

Note: ∅ is NOT a cell.



5 - 2

A cell complex is a finite CW-complex whose attaching maps are PL
embeddings. It is atomic if inclusions of cells are determined by inclusions
of their vertex sets. (Cf. graphs without loops and multiple edges.)

A finite cell complex B is dichotomial if it is atomic, and for each cell A
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A cell complex is a finite CW-complex whose attaching maps are PL
embeddings. It is atomic if inclusions of cells are determined by inclusions
of their vertex sets. (Cf. graphs without loops and multiple edges.)

A finite cell complex B is dichotomial if it is atomic, and for each cell A
of B, there exists another (the “opposite”) cell Ā of B whose vertices are
precisely all the vertices of B that are not in A.

Note: ∅ is NOT a cell.

Example. The boundary of a simplex is dichotomial.

In fact, every dichotomial simplicial complex is of this form.

Theorem 1. Every dichotomial cell complex is PL homeomorphic to a
sphere of some dimension.

There exist precisely two dichotomial 3-spheres; their 1-skeleta are K5

and K3,3.

There exist precisely six dichotomial 4-spheres; their 1-skeleta are
precisely the graphs of the Petersen family apart from K4,4 \ e.

Example. K5 is the 1-skeleton of ∂∆4, and K6 is the 1-skeleton of ∂∆5.
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Example. The dichotomial 3-sphere whose 1-skeleton is K3,3
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Example. The dichotomial 4-sphere whose 1-skeleton is the Petersen graph
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HIGHER DIMENSIONS...

Next simplest case: n-polyhedron
?
↪→ R2n.

Proof: Uses the Borsuk–Ulam theorem (1932).

Theorem (Flores, 1933) Every m-obstructor does not embed in Rm.

If K and L are subcomplexes of a cell complex M , the deleted join
K ~L is a subcomplex of the join K ∗L consisting of the joins A ∗B for
each pair of disjoint cells A ∈ K and B ∈ L.
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Theorem (Flores, 1935) The n-skeleton of ∆2n+2 is a 2n-obstructor.

A modern proof uses a ”combinatorial Alexander duality”.
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Corollary (van Kampen, 1932) The n-skeleton Fn of ∆2n+2

(“generalized K5”) and the join F 0 ∗ · · · ∗ F 0 of n+ 1 copies of the
3-point set (“generalized K3,3”) do not embed in R2n.

Addendum (Grünbaum, 1969) More generally, each n-dimensional join
of the type Fn1 ∗ · · · ∗ Fnk does not embed in R2n.
But every its proper subcomplex embeds in R2n (explicitly).

Theorem (Sarkaria, 1991) The only 2n-obstructors among simplicial
complexes are n-dimensional joins of the type Fn1 ∗ · · · ∗ Fnk .
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Theorem 2. (a) The n-skeleton of every dichotomial (2n+ 1)-sphere is
a 2n-obstructor. Consequently it does not embed in R2n.
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(b) But all its proper subpolyhedra embed in R2n, at least for n 6= 2.
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Example. By Sarkaria’s theorem, there are only three simplicial
4-obstructors: F 2, F 0 ∗ F 0 ∗ F 0 and F 1 ∗ F 0.
But one can construct at least ten dichotomial 5-spheres, whose 2-skeleta
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Theorem 3. If K is an n-dimensional cell complex, TFAE:
(i) K is linklessly embeddable in R2n+1;
(ii) there exists a Z/2-map K~̂K → S2n+1.
(iii) an odd-dimensional version of the van Kampen obstruction,
e(λ)2n+2 ∈ H2n+2(K~̂K/Z2), vanishes.
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(ii) there exists a Z/2-map K~̂K → S2n+1.
(iii) an odd-dimensional version of the van Kampen obstruction,
e(λ)2n+2 ∈ H2n+2(K~̂K/Z2), vanishes.

• K: cell complex
• If S is a subcomplex of K, let S̄ be the subcomplex of K consisting of
all cells of K disjoint from S.

• K~̂K: the union of K ~K and cones of the form C(S ∗ S̄), where S
runs over all subcomplexes of K such that Hn(S)⊗Hn(S̄) is nonzero
(⇔ not all maps S ∗ S̄ → S2n+1 are null-homotopic).

Example (Lovasz-Schrijver, Taniyama). The n-skeleton of ∆2n+3

does not linklessly embed in R2n+1.

Theorem 4. If K is the n-skeleton of a dichotomial (2n+ 2)-sphere,
then K~̂K ∼= S2n+2. Consequently K does not linklessly embed in
R2n+1, but all its proper subpolyhedra do.
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• n-circuit: an n-polyhedron M such that Hn(M \ {x}) = 0 for every
x ∈M (⇒ Hn(M) is cyclic).

• n-circuit with boundary: an n-polyhedron M along with an
(n−1)-dimensional subpolyhedron ∂M such that M/∂M is an n-circuit.

Theorem 5. Suppose that P is an n-polyhedron, and Q is an
(n− 1)-dimensional subpolyhedron of P such that the closure of every
component of P \Q is an n-circuit with boundary.
In part (a), assume further that every pair of disjoint singular
(n− 1)-circuits in Q bounds disjoint singular n-circuits in P .

(a) Q linklessly embeds in S2n−1 ⇐⇒ P ∪ CQ embeds in S2n.
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Theorem 5. Suppose that P is an n-polyhedron, and Q is an
(n− 1)-dimensional subpolyhedron of P such that the closure of every
component of P \Q is an n-circuit with boundary.
In part (a), assume further that every pair of disjoint singular
(n− 1)-circuits in Q bounds disjoint singular n-circuits in P .

(a) Q linklessly embeds in S2n−1 ⇐⇒ P ∪ CQ embeds in S2n.

(b) P embeds in S2n ⇐⇒ P ∪ CQ linklessly embeds in S2n+1.

Van der Holst (2006): (b), n = 1 and much of (a), n = 2

Robertson–Seymor–Thomas (1993) (b), ⇒, n = 1
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An edge contraction is admissible if the contracted edge is not contained
in an isomorphic copy of K3.

inadmissible contraction

Lemma. H is a minor of G ⇐⇒ H is obtained from a subgraph of G by
a sequence of admissible edge contractions. ⊂

Lemma. If G ↪→ R2 and H is obtained
from G by an admissible edge contraction,
then H ↪→ R2.

cell-like

Corollary. If G ↪→ R2 and H is a minor of G,
then H ↪→ R2.

It is the definition of a minor via admissible contractions that will
generalize to higher dimensions: admissible contraction  zipping.
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PART 3

DIGRESSION: COMBINATORICS

OF COLLAPSING
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A polyhedron P elementarily collapses onto a subpolyhedron Q if
P = Q ∪B, where the pair (B,B ∩Q) is homeomorphic to (∆n,∆n−1)
for some n. Here ∆n is the n-simplex and ∆n−1 is its facet.
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A polyhedron P elementarily collapses onto a subpolyhedron Q if
P = Q ∪B, where the pair (B,B ∩Q) is homeomorphic to (∆n,∆n−1)
for some n. Here ∆n is the n-simplex and ∆n−1 is its facet.

(n− 1)-ball in the boundary of B

n-ball B

Q

A collapse is a finite chain of elementary collapses.

Collapsing

A polyhedron is collapsible if it collapses onto a point.

∆n

∆n−1

homeomorphism
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Bing’s house with two rooms

• B is not collapsible, because “there’s nowhere to start from”

• The 3-ball collapses onto a copy of B

B is homotopy equivalent to the 3-ball, i.e. contractible

If P collapses onto Q, clearly there is a deformation retraction P → Q.
In particular, P and Q are homotopy equivalent.

collapsible ⇒ contractible
6⇐
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Combinatorial characterizations of collapsibility

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it
can be triangulated by a simplicial complex that is simplicially collapsible.

A simplicial complex K elementarily simplicially collapses onto a
subcomplex L if K = L ∪A, where A is a simplex of K and
L ∩A = ∂A \B, where B is a facet of A.

L A B

A simplicial collapse is a finite chain of elementary simplicial collapses.
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Combinatorial characterizations of collapsibility

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it
can be triangulated by a simplicial complex that is simplicially collapsible.

A simplicial complex K elementarily simplicially collapses onto a
subcomplex L if K = L ∪A, where A is a simplex of K and
L ∩A = ∂A \B, where B is a facet of A.

L A B • Two new characterizations:

1) In terms of zipping of posets

2) In terms of contructible posets

A simplicial complex, and more generally a cell complex can be
reconstructed from, and so will be identified with, the poset of its
nonempty faces.

A simplicial collapse is a finite chain of elementary simplicial collapses.
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We call a poset P constructible if either P has a greatest element or
P = Q ∪R, where Q and R are order ideals (that is, if p ≤ q where
q ∈ Q then p ∈ Q; and similarly for R), each of Q, R and Q ∩R is
constructible, and every maximal element of Q ∩R is covered by a
maximal element of Q and by a maximal element of R.

Constructible posets

For face posets of simplicial complexes (including
the empty face!) this is Hochster’s 1972 definition.
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P = Q ∪R, where Q and R are order ideals (that is, if p ≤ q where
q ∈ Q then p ∈ Q; and similarly for R), each of Q, R and Q ∩R is
constructible, and every maximal element of Q ∩R is covered by a
maximal element of Q and by a maximal element of R.

Constructible posets

Theorem 6. The following are equivalent for a polyhedron X:

(i) X is collapsible;

(ii) X is triangulated by a simplicial complex whose dual poset is
constructible;

(iii) X is cellulated by a cell complex whose dual poset is constructible.

For face posets of simplicial complexes (including
the empty face!) this is Hochster’s 1972 definition.

Example (Hachimori, 1998): A non-collapsible
contractible polyhedron can be triangulated by a
constructible simplicial complex.
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Zipping

Let P be a poset. Let p ∈ P cover incomparable elements q, r ∈ P , where
• every s < p with s 6= q, r satisfies s < q and s < r, and
• if s > q and s > r then s ≥ p.

Then P elementarily zips onto the quotient of P by ({p, q, r},≤).
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Zipping

Let P be a poset. Let p ∈ P cover incomparable elements q, r ∈ P , where
• every s < p with s 6= q, r satisfies s < q and s < r, and
• if s > q and s > r then s ≥ p.

Then P elementarily zips onto the quotient of P by ({p, q, r},≤).

A zipping of posets is a chain of elementary zippings.

zip

zip

zip

(Introduced by N. Reading, 2004)

Theorem 7. A cell complex K zips onto a point if and only if the dual
poset K∗ is constructible.

Lemma. If a cell complex zips onto a poset L, then L is a cell complex.
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GRAPHS AND MINORS

IN HIGHER DIMENSIONS

PART 4
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Problem I. Find a higher-dimensional generalization of the Kuratowski
graph planarity crterion.
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But does looking at subcomplexes suffice? Why did R-S-T need minors?

Lemma. Suppose that a compact n-polyhedron P PL embeds in Rm,
and f : P → Q is a PL map. Then Q embeds in Rm if either
(a) f is collapsible (=has collapsible point-inverses), or
(b) f is cell-like (=has contractible point-inverses) and m− n ≥ 3.

Problem I. Find a higher-dimensional generalization of the Kuratowski
graph planarity crterion.

Remark. It is obvious that Q embeds in Rm if Q = P/C, where C is a
collapsible subpolyhedron of P . This can be iterated: (P/C1)/C2, etc.

Lemma. If K is an n-polyhedron, n 6= 2, embeddable in R2n, then K
embeds in a Cohen-Macaulay n-polyhedron, embeddable in R2n.

”Higher-dimensional graphs”: Cohen–Macaulay cell complexes.

A cell complex K is called Cohen–Macaulay if K and its links of cells are
acyclic in all dimensions except the maximal one. Equivalently,
Hi(K) = 0 = Hi(K, K \ p) for all i < dimK and every point p ∈ K.

Lemma. Collapsible maps preserve Cohen–Macaulayness.
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Example. For each n > 2 there exist infinitely many Cohen–Macaulay
pairwise non-homeomorphic n-polyhedra K1,K2, . . . such that each Kr

does not embed in R2n but every its proper subpolyhedron does.
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Example. For each n > 2 there exist infinitely many Cohen–Macaulay
pairwise non-homeomorphic n-polyhedra K1,K2, . . . such that each Kr

does not embed in R2n but every its proper subpolyhedron does.

Let K be the n-skeleton of ∆(2n+2), say. It is
Cohen-Macaulay. Pick an (n− 1)-cell A in K whose
neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages
C, with the boundary spheres in the binding A.

Now shrink each of these r balls to a point. The
result is a new polyhedron Kr, where C is shrunk
onto the wedge of r + 1 balls C0, . . . , Cr.

K

Kr

Since Kr is a collapsible image of K, all proper
subpolyhedra of Kr embed in R2n.
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Example. For each n > 2 there exist infinitely many Cohen–Macaulay
pairwise non-homeomorphic n-polyhedra K1,K2, . . . such that each Kr

does not embed in R2n but every its proper subpolyhedron does.

Let K be the n-skeleton of ∆(2n+2), say. It is
Cohen-Macaulay. Pick an (n− 1)-cell A in K whose
neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages
C, with the boundary spheres in the binding A.

Now shrink each of these r balls to a point. The
result is a new polyhedron Kr, where C is shrunk
onto the wedge of r + 1 balls C0, . . . , Cr.

K

Kr

Since Kr is a collapsible image of K, all proper
subpolyhedra of Kr embed in R2n.

Also Kr does not embed in R2n since it admits a
collapsible map onto K: shrink the wedge of the
balls C1, . . . , Cr to a point.
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.
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Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.
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complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1,K2, . . . such that
each Ki does not embed in R2n but every its proper minor does.
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simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1,K2, . . . such that
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Problem II. Given an n, are there only finitely many n-dimensional
Cohen–Macalulay cell complexes that do not embed in R2n while all their
proper minors embed? (Yes ⇒ a higher-dim. Kuratowski theorem.)

Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1,K2, . . . such that
each Ki does not embed in R2n but every its proper minor does.Not Cohen–

Macaulay
!
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Theorem 8. If K is the n-skeleton of a dichotomial (2n+ 1)-sphere,
n 6= 2 (resp. of a dichotomial (2n+ 2)-sphere), then all its proper minors
embed in R2n (resp. linklessly embed in R2n+1).

Problem II. Given an n, are there only finitely many n-dimensional
Cohen–Macalulay cell complexes that do not embed in R2n while all their
proper minors embed? (Yes ⇒ a higher-dim. Kuratowski theorem.)

Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1,K2, . . . such that
each Ki does not embed in R2n but every its proper minor does.Not Cohen–
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!
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Theorem 8. If K is the n-skeleton of a dichotomial (2n+ 1)-sphere,
n 6= 2 (resp. of a dichotomial (2n+ 2)-sphere), then all its proper minors
embed in R2n (resp. linklessly embed in R2n+1).

Problem II. Given an n, are there only finitely many n-dimensional
Cohen–Macalulay cell complexes that do not embed in R2n while all their
proper minors embed? (Yes ⇒ a higher-dim. Kuratowski theorem.)

Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1,K2, . . . such that
each Ki does not embed in R2n but every its proper minor does.Not Cohen–

Macaulay
!

(⇒ Theorem 1.)
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A cell complex L will be called a minor of a cell complex K if some
subcomplex of K zips onto L.

Theorem 8. If K is the n-skeleton of a dichotomial (2n+ 1)-sphere,
n 6= 2 (resp. of a dichotomial (2n+ 2)-sphere), then all its proper minors
embed in R2n (resp. linklessly embed in R2n+1).

Problem II. Given an n, are there only finitely many n-dimensional
Cohen–Macalulay cell complexes that do not embed in R2n while all their
proper minors embed? (Yes ⇒ a higher-dim. Kuratowski theorem.)

Problem III. Given an m, is the number of dichotomial m-spheres finite?

Remark. A zipping induces a collapsible map between the cell
complexes. Conversely, every collapsible map can be triangulated by a
simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise
non-homeomorphic n-dim simplicial complexes K1,K2, . . . such that
each Ki does not embed in R2n but every its proper minor does.Not Cohen–

Macaulay
!

(⇒ Theorem 1.)
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