Combinatorics of intrinsic linking

SERGEY MELIKHOV

Steklov Math Institute (Moscow)

Tokyo, August 2016

Theorem (Kuratowski 1929; Pontriagin '28, O.Frink-P.A.Smith '30) A graph embeds in the plane iff it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

Remark (Wagner, 1937). An equivalent statement is: **Theorem (Kuratowski 1929; Pontriagin '28, O.Frink-P.A.Smith '30)** A graph embeds in the plane iff it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

A *minor* of a graph G is a graph obtained from a subgraph of G by a sequence of edge contractions.

An embedding of a polyhedron into \mathbb{R}^m is *linkless* if for every two disjoint closed subpolyhedra of the image, one is contained in an *m*-ball disjoint from the other one.

In the sense of topology: a space triangulated by a simplicial complex.

An embedding of a polyhedron into \mathbb{R}^m is *linkless* if for every two disjoint closed subpolyhedra of the image, one is contained in an *m*-ball disjoint from the other one.

Lemma. Panelled \implies linkless and (trivially) knotless

In the sense of topology: a space triangulated by a simplicial complex.

An embedding of a polyhedron into \mathbb{R}^m is *linkless* if for every two disjoint closed subpolyhedra of the image, one is contained in an *m*-ball disjoint from the other one.

Lemma. Panelled \implies linkless and (trivially) knotless

Theorem (Robertson–Seymour–Thomas, 1995)

(a) If a graph embeds in \mathbb{R}^3 so that no pair of its disjoint cycles is linked with an odd linking number, then it admits a panelled embedding in \mathbb{R}^3 .

In the sense of topology: a space triangulated by a simplicial complex.

An embedding of a polyhedron into \mathbb{R}^m is *linkless* if for every two disjoint closed subpolyhedra of the image, one is contained in an *m*-ball disjoint from the other one.

Lemma. Panelled \implies linkless and (trivially) knotless

Theorem (Robertson–Seymour–Thomas, 1995)

(a) If a graph embeds in \mathbb{R}^3 so that no pair of its disjoint cycles is linked with an odd linking number, then it admits a panelled embedding in \mathbb{R}^3 .

(b) If two panelled embeddings of a graph in \mathbb{R}^3 are inequivalent then they differ already on a subgraph, homeomorphic to K_5 or $K_{3,3}$.

In the sense of topology: a space triangulated by a simplicial complex.

An embedding of a polyhedron into \mathbb{R}^m is *linkless* if for every two disjoint closed subpolyhedra of the image, one is contained in an *m*-ball disjoint from the other one.

Lemma. Panelled \implies linkless and (trivially) knotless

Theorem (Robertson–Seymour–Thomas, 1995)

(a) If a graph embeds in \mathbb{R}^3 so that no pair of its disjoint cycles is linked with an odd linking number, then it admits a panelled embedding in \mathbb{R}^3 .

(b) If two panelled embeddings of a graph in \mathbb{R}^3 are inequivalent then they differ already on a subgraph, homeomorphic to K_5 or $K_{3,3}$.

(c) A graph admits a linkless embedding in \mathbb{R}^3 if and only if it has no <u>minor</u> among the seven graphs known as the **Petersen family**. 3 - 5

A *cell complex* is a finite CW-complex whose attaching maps are PL embeddings. It is *atomic* if inclusions of cells are determined by inclusions of their vertex sets. (Cf. graphs without loops and multiple edges.)

Note: \emptyset is NOT a cell.

A *cell complex* is a finite CW-complex whose attaching maps are PL embeddings. It is *atomic* if inclusions of cells are determined by inclusions of their vertex sets. (Cf. graphs without loops and multiple edges.)

Note: \emptyset is NOT a cell.

A finite cell complex B is *dichotomial* if it is atomic, and for each cell A of B, there exists another (the "opposite") cell \overline{A} of B whose vertices are precisely all the vertices of B that are not in A.

Example. The boundary of a simplex is dichotomial.

In fact, every dichotomial *simplicial* complex is of this form.

A *cell complex* is a finite CW-complex whose attaching maps are PL embeddings. It is *atomic* if inclusions of cells are determined by inclusions of their vertex sets. (Cf. graphs without loops and multiple edges.)

Note: \emptyset is NOT a cell.

A finite cell complex B is *dichotomial* if it is atomic, and for each cell A of B, there exists another (the "opposite") cell \overline{A} of B whose vertices are precisely all the vertices of B that are not in A.

Example. The boundary of a simplex is dichotomial.

In fact, every dichotomial *simplicial* complex is of this form.

Theorem 1. Every dichotomial cell complex is PL homeomorphic to a sphere of some dimension.

There exist precisely two dichotomial 3-spheres; their 1-skeleta are K_5 and $K_{3,3}$.

There exist precisely six dichotomial 4-spheres; their 1-skeleta are precisely the graphs of the Petersen family apart from $K_{4,4} \setminus e$.

Example. K_5 is the 1-skeleton of $\partial \Delta^4$, and K_6 is the 1-skeleton of $\partial \Delta^5$. 5 - 3

We start with the $K_{3,3}$ and attach to it 2-cells and 3-cells

Opposite to each edge

We start with the $K_{3,3}$ and attach to it 2-cells and 3-cells

Opposite to each edge

there is a 4-cycle ...

We start with the $K_{3,3}$ and attach to it 2-cells and 3-cells

Opposite to each edge

there is a 4-cycle ...

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

which has been glued up by three 2-cells ...

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

which has been glued up by three 2-cells ...

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

which has been glued up by three 2-cells ...

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

which has been glued up by three 2-cells ...

which form a 2-sphere ...

6 - 13

Opposite to each edge

there is a 4-cycle ...

which we glue up by a 2-cell

Opposite to each vertex there is a $K_{3,2}$...

which has been glued up by three 2-cells ...

which form a 2-sphere ... which we glue up by a 3-cell. 6 - 14

There are twelve 5-cycles.

All of them are glued up by 2-cells.

Now 2-cells are already split into pairs of opposite cells.

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

Now 2-cells are already split into pairs of opposite cells.

is a subdivision of the 1-skeleton of the 3-simplex ...

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ...

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ... which is glued up by two disks. 7 - 13

Now 2-cells are already split into pairs of opposite cells.

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ...

which is glued up by two disks.

The redulting 2-sphere is glued up by a 3-ball.

Opposite to each vertex ...

Opposite to each vertex ...

Opposite to each vertex ... is a circle with three diameters ...

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

which results in three 2-spheres ...

Opposite to adjacent edges ...

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ... which is glued up by two disks.

The redulting 2-sphere is glued up by a 3-ball.

is the same circle with two diameters: the same one and a different one.

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

which results in three 2-spheres ... which are glued up by three 3-balls.

Opposite to adjacent edges ...

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ... which is glued up by two disks.

The r25ulting 2-sphere is glued up by a 3-ball.

is the same circle with two diameters: the same one and a different one.

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

which results in three 2-spheres ... which are glued up by three 3-balls. These form a 3-sphere...

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ... which is glued up by two disks.

The refulting 2-sphere is glued up by a 3-ball.

Opposite to adjacent edges ...

is the same circle with two diameters: the same one and a different one.

Opposite to each vertex ... is a circle with three diameters ... which is glued up by three 2-disks ...

which results in three 2-spheres ... which are glued up by three 3-balls. These form a 3-sphere... which is glued up by a 4-ball.

Opposite to adjacent edges ...

Opposite to each edge ...

is a subdivision of the 1-skeleton of the 3-simplex ...

with missing 2-faces glued up by 2-cells.

In other words, a circle with two diameters ... which is glued up by two disks.

The radiulting 2-sphere is glued up by a 3-ball.

is the same circle with two diameters:

the same one and a different one.

HIGHER DIMENSIONS...

Next simplest case: *n*-polyhedron $\stackrel{?}{\hookrightarrow} \mathbb{R}^{2n}$.

HIGHER DIMENSIONS...

Next simplest case: *n*-polyhedron $\stackrel{?}{\hookrightarrow} \mathbb{R}^{2n}$.

If K and L are subcomplexes of a cell complex M, the *deleted join* $K \circledast L$ is a subcomplex of the join $K \ast L$ consisting of the joins $A \ast B$ for each pair of disjoint cells $A \in K$ and $B \in L$.

HIGHER DIMENSIONS...

Next simplest case: *n*-polyhedron $\stackrel{?}{\hookrightarrow} \mathbb{R}^{2n}$.

If K and L are subcomplexes of a cell complex M, the *deleted join* $K \circledast L$ is a subcomplex of the join $K \ast L$ consisting of the joins $A \ast B$ for each pair of disjoint cells $A \in K$ and $B \in L$.

An *m*-obstructor is an atomic cell complex K with $K \circledast K \cong S^{m+1}$.

HIGHER DIMENSIONS...

Next simplest case: *n*-polyhedron $\stackrel{?}{\hookrightarrow} \mathbb{R}^{2n}$.

If K and L are subcomplexes of a cell complex M, the *deleted join* $K \circledast L$ is a subcomplex of the join $K \ast L$ consisting of the joins $A \ast B$ for each pair of disjoint cells $A \in K$ and $B \in L$.

An *m*-obstructor is an atomic cell complex K with $K \circledast K \cong S^{m+1}$.

Theorem (Flores, 1933) Every *m*-obstructor does not embed in \mathbb{R}^m . Proof: Uses the Borsuk–Ulam theorem (1932).

8 - 4

A modern proof uses a "combinatorial Alexander duality".

A modern proof uses a "combinatorial Alexander duality".

Example. The 0-skeleton of Δ^2 is the 3-point set.

A modern proof uses a "combinatorial Alexander duality".

Example. The 0-skeleton of Δ^2 is the 3-point set.

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is a (k + l + 2)-obstructor.

 $\cong S^1$

A modern proof uses a "combinatorial Alexander duality".

Example. The 0-skeleton of Δ^2 is the 3-point set.

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is a (k + l + 2)-obstructor.

Corollary (van Kampen, 1932) The *n*-skeleton F^n of Δ^{2n+2} ("generalized K_5 ") and the join $F^0 * \cdots * F^0$ of n+1 copies of the 3-point set ("generalized $K_{3,3}$ ") do not embed in \mathbb{R}^{2n} .

A modern proof uses a "combinatorial Alexander duality".

Example. The 0-skeleton of Δ^2 is the 3-point set.

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is a (k + l + 2)-obstructor.

Corollary (van Kampen, 1932) The *n*-skeleton F^n of Δ^{2n+2} ("generalized K_5 ") and the join $F^0 * \cdots * F^0$ of n+1 copies of the 3-point set ("generalized $K_{3,3}$ ") do not embed in \mathbb{R}^{2n} .

Addendum (Grünbaum, 1969) More generally, each *n*-dimensional join of the type $F^{n_1} * \cdots * F^{n_k}$ does not embed in \mathbb{R}^{2n} . But every its proper subcomplex embeds in \mathbb{R}^{2n} (explicitly).

A modern proof uses a "combinatorial Alexander duality".

Example. The 0-skeleton of Δ^2 is the 3-point set.

The associativity of the join implies

Lemma (Flores, 1933) The join of a k-obstructor and an l-obstructor is a (k + l + 2)-obstructor.

Corollary (van Kampen, 1932) The *n*-skeleton F^n of Δ^{2n+2} ("generalized K_5 ") and the join $F^0 * \cdots * F^0$ of n+1 copies of the 3-point set ("generalized $K_{3,3}$ ") do not embed in \mathbb{R}^{2n} .

Addendum (Grünbaum, 1969) More generally, each *n*-dimensional join of the type $F^{n_1} * \cdots * F^{n_k}$ does not embed in \mathbb{R}^{2n} . But every its proper subcomplex embeds in \mathbb{R}^{2n} (explicitly).

Theorem (Sarkaria, 1991) The only 2n-obstructors among simplicial complexes are n-dimensional joins of the type $F^{n_1} * \cdots * F^{n_k}$.

9 - 6

(b) But all its proper subpolyhedra embed in \mathbb{R}^{2n} , at least for $n \neq 2$.

(b) But all its proper subpolyhedra embed in \mathbb{R}^{2n} , at least for $n \neq 2$.

Example. By Sarkaria's theorem, there are only three simplicial 4-obstructors: F^2 , $F^0 * F^0 * F^0$ and $F^1 * F^0$.

But one can construct at least ten dichotomial 5-spheres, whose 2-skeleta are non-simplicial 4-obstructors.

(b) But all its proper subpolyhedra embed in \mathbb{R}^{2n} , at least for $n \neq 2$.

Example. By Sarkaria's theorem, there are only three simplicial 4-obstructors: F^2 , $F^0 * F^0 * F^0$ and $F^1 * F^0$.

But one can construct at least ten dichotomial 5-spheres, whose 2-skeleta are non-simplicial 4-obstructors.

Remark. Probably, there are many more. Their 1-skeleta are related to (but different from) van der Holst's "Heawood family" of 78 graphs, which all have Colin de Verdiere's parameter $\mu = 6$.

(b) But all its proper subpolyhedra embed in \mathbb{R}^{2n} , at least for $n \neq 2$.

Example. By Sarkaria's theorem, there are only three simplicial 4-obstructors: F^2 , $F^0 * F^0 * F^0$ and $F^1 * F^0$.

But one can construct at least ten dichotomial 5-spheres, whose 2-skeleta are non-simplicial 4-obstructors.

Remark. Probably, there are many more. Their 1-skeleta are related to (but different from) van der Holst's "Heawood family" of 78 graphs, which all have Colin de Verdiere's parameter $\mu = 6$.

(c) All 2n-obstructors are n-skeleta of dichotomial (2n + 1)-spheres.

(b) But all its proper subpolyhedra embed in \mathbb{R}^{2n} , at least for $n \neq 2$.

Example. By Sarkaria's theorem, there are only three simplicial 4-obstructors: F^2 , $F^0 * F^0 * F^0$ and $F^1 * F^0$.

But one can construct at least ten dichotomial 5-spheres, whose 2-skeleta are non-simplicial 4-obstructors.

Remark. Probably, there are many more. Their 1-skeleta are related to (but different from) van der Holst's "Heawood family" of 78 graphs, which all have Colin de Verdiere's parameter $\mu = 6$.

(c) All 2n-obstructors are n-skeleta of dichotomial (2n + 1)-spheres.

Example. Not only F^n , but every *n*-dimensional join $F^{n_1} * \cdots * F^{n_k}$ is the *n*-skeleton of some (explicit) dichotomial (2n + 1)-sphere.

(b) But all its proper subpolyhedra embed in \mathbb{R}^{2n} , at least for $n \neq 2$.

Example. By Sarkaria's theorem, there are only three simplicial 4-obstructors: F^2 , $F^0 * F^0 * F^0$ and $F^1 * F^0$.

But one can construct at least ten dichotomial 5-spheres, whose 2-skeleta are non-simplicial 4-obstructors.

Remark. Probably, there are many more. Their 1-skeleta are related to (but different from) van der Holst's "Heawood family" of 78 graphs, which all have Colin de Verdiere's parameter $\mu = 6$.

(c) All 2n-obstructors are n-skeleta of dichotomial (2n + 1)-spheres.

Example. Not only F^n , but every *n*-dimensional join $F^{n_1} * \cdots * F^{n_k}$ is the *n*-skeleton of some (explicit) dichotomial (2n + 1)-sphere.

• K: cell complex

• If S is a subcomplex of K, let \overline{S} be the subcomplex of K consisting of all cells of K disjoint from S.

• K: cell complex

• If S is a subcomplex of K, let \overline{S} be the subcomplex of K consisting of all cells of K disjoint from S.

• $K \hat{*} K$: the union of $K \hat{*} K$ and cones of the form $C(S \hat{*} S)$, where S runs over all subcomplexes of K such that $H^n(S) \otimes H^n(\bar{S})$ is nonzero (\Leftrightarrow not all maps $S \hat{*} S \rightarrow S^{2n+1}$ are null-homotopic).
• K: cell complex

• If S is a subcomplex of K, let \overline{S} be the subcomplex of K consisting of all cells of K disjoint from S.

• $K \hat{*} K$: the union of $K \hat{*} K$ and cones of the form $C(S \hat{*} S)$, where S runs over all subcomplexes of K such that $H^n(S) \otimes H^n(\bar{S})$ is nonzero (\Leftrightarrow not all maps $S \hat{*} S \rightarrow S^{2n+1}$ are null-homotopic).

• K: cell complex

• If S is a subcomplex of K, let \overline{S} be the subcomplex of K consisting of all cells of K disjoint from S.

• $K \hat{*} K$: the union of $K \hat{*} K$ and cones of the form $C(S \hat{*} S)$, where S runs over all subcomplexes of K such that $H^n(S) \otimes H^n(\bar{S})$ is nonzero (\Leftrightarrow not all maps $S \hat{*} S \rightarrow S^{2n+1}$ are null-homotopic).

Theorem 3. If K is an n-dimensional cell complex, TFAE: (i) K is linklessly embeddable in \mathbb{R}^{2n+1} ; (ii) there exists a $\mathbb{Z}/2$ -map $K \hat{\circledast} K \to S^{2n+1}$. (iii) an odd-dimensional version of the van Kampen obstruction, $e(\lambda)^{2n+2} \in H^{2n+2}(K \hat{\circledast} K/\mathbb{Z}_2)$, vanishes. • K: cell complex

• If S is a subcomplex of K, let \overline{S} be the subcomplex of K consisting of all cells of K disjoint from S.

• $K \hat{*} K$: the union of $K \hat{*} K$ and cones of the form $C(S \hat{*} S)$, where S runs over all subcomplexes of K such that $H^n(S) \otimes H^n(\bar{S})$ is nonzero (\Leftrightarrow not all maps $S \hat{*} S \rightarrow S^{2n+1}$ are null-homotopic).

Theorem 3. If K is an n-dimensional cell complex, TFAE: (i) K is linklessly embeddable in \mathbb{R}^{2n+1} ; (ii) there exists a $\mathbb{Z}/2$ -map $K \hat{\circledast} K \to S^{2n+1}$. (iii) an odd-dimensional version of the van Kampen obstruction, $e(\lambda)^{2n+2} \in H^{2n+2}(K \hat{\circledast} K/\mathbb{Z}_2)$, vanishes.

Theorem 4. If K is the n-skeleton of a dichotomial (2n + 2)-sphere, then $K \hat{*} K \cong S^{2n+2}$. Consequently K does not linklessly embed in \mathbb{R}^{2n+1} , but all its proper subpolyhedra do.

Example (Lovasz-Schrijver, Taniyama). The *n*-skeleton of Δ^{2n+3} does not linklessly embed in \mathbb{R}^{2n+1} .

11 - 5

• *n-circuit*: an *n*-polyhedron M such that $H^n(M \setminus \{x\}) = 0$ for every $x \in M \iff H^n(M)$ is cyclic).

• *n-circuit with boundary*: an *n*-polyhedron M along with an (n-1)-dimensional subpolyhedron ∂M such that $M/\partial M$ is an *n*-circuit.

Theorem 5. Suppose that P is an n-polyhedron, and Q is an (n-1)-dimensional subpolyhedron of P such that the closure of every component of $P \setminus Q$ is an n-circuit with boundary. In part (a), assume further that every pair of disjoint singular (n-1)-circuits in Q bounds disjoint singular n-circuits in P.

(a) Q linklessly embeds in $S^{2n-1} \iff P \cup CQ$ embeds in S^{2n} . (b) P embeds in $S^{2n} \iff P \cup CQ$ linklessly embeds in S^{2n+1} . • *n-circuit*: an *n*-polyhedron M such that $H^n(M \setminus \{x\}) = 0$ for every $x \in M \iff H^n(M)$ is cyclic).

• *n-circuit with boundary*: an *n*-polyhedron M along with an (n-1)-dimensional subpolyhedron ∂M such that $M/\partial M$ is an *n*-circuit.

Theorem 5. Suppose that P is an n-polyhedron, and Q is an (n-1)-dimensional subpolyhedron of P such that the closure of every component of $P \setminus Q$ is an n-circuit with boundary. In part (a), assume further that every pair of disjoint singular (n-1)-circuits in Q bounds disjoint singular n-circuits in P.

(a) Q linklessly embeds in $S^{2n-1} \iff P \cup CQ$ embeds in S^{2n} . (b) P embeds in $S^{2n} \iff P \cup CQ$ linklessly embeds in S^{2n+1} .

Van der Holst (2006): (b), n = 1 and much of (a), n = 2

Robertson–Seymor–Thomas (1993) (b), \Rightarrow , n = 1

12 - 2

Lemma. *H* is a minor of $G \iff H$ is obtained from a subgraph of *G* by a sequence of **admissible** edge contractions.

Lemma. *H* is a minor of $G \iff H$ is obtained from a subgraph of G by a sequence of admissible edge contractions.

Lemma. *H* is a minor of $G \iff H$ is obtained from a subgraph of G by a sequence of admissible edge contractions.

Lemma. If $G \hookrightarrow \mathbb{R}^2$ and H is obtained from G by an admissible edge contraction, then $H \hookrightarrow \mathbb{R}^2$.

Lemma. *H* is a minor of $G \iff H$ is obtained from a subgraph of G by a sequence of admissible edge contractions.

Lemma. If $G \hookrightarrow \mathbb{R}^2$ and H is obtained from G by an admissible edge contraction, then $H \hookrightarrow \mathbb{R}^2$.

Corollary. If $G \hookrightarrow \mathbb{R}^2$ and H is a minor of G, then $H \hookrightarrow \mathbb{R}^2$.

Lemma. *H* is a minor of $G \iff H$ is obtained from a subgraph of G by a sequence of admissible edge contractions.

Lemma. If $G \hookrightarrow \mathbb{R}^2$ and H is obtained from G by an admissible edge contraction, then $H \hookrightarrow \mathbb{R}^2$.

Corollary. If $G \hookrightarrow \mathbb{R}^2$ and H is a minor of G, then $H \hookrightarrow \mathbb{R}^2$.

It is the definition of a minor via admissible contractions that will generalize to higher dimensions: admissible contraction \rightsquigarrow zipping. 13 - 6

DIGRESSION: COMBINATORICS

OF COLLAPSING

Collapsing

Elementary collapse:

Collapsing

A polyhedron P elementarily collapses onto a subpolyhedron Q if $P = Q \cup B$, where the pair $(B, B \cap Q)$ is homeomorphic to (Δ^n, Δ^{n-1}) for some n. Here Δ^n is the *n*-simplex and Δ^{n-1} is its facet.

Collapsing

A polyhedron P elementarily collapses onto a subpolyhedron Q if $P = Q \cup B$, where the pair $(B, B \cap Q)$ is homeomorphic to (Δ^n, Δ^{n-1}) for some n. Here Δ^n is the *n*-simplex and Δ^{n-1} is its facet.

A *collapse* is a finite chain of elementary collapses.

A polyhedron is *collapsible* if it collapses onto a point.

15 - 3

 \bullet B is not collapsible, because "there's nowhere to start from"

- $\bullet~B$ is not collapsible, because "there's nowhere to start from"
- The 3-ball collapses onto a copy of ${\cal B}$

- \bullet B is not collapsible, because "there's nowhere to start from"
- The 3-ball collapses onto a copy of ${\cal B}$

If P collapses onto Q, clearly there is a deformation retraction $P \rightarrow Q$. In particular, P and Q are homotopy equivalent.

- \bullet B is not collapsible, because "there's nowhere to start from"
- The 3-ball collapses onto a copy of ${\cal B}$

If P collapses onto Q, clearly there is a deformation retraction $P \rightarrow Q$. In particular, P and Q are homotopy equivalent.

 $\mathsf{collapsible} \Rightarrow \mathsf{contractible}$

- \bullet B is not collapsible, because "there's nowhere to start from"
- The 3-ball collapses onto a copy of ${\cal B}$

If P collapses onto Q, clearly there is a deformation retraction $P \rightarrow Q$. In particular, P and Q are homotopy equivalent.

collapsible \Rightarrow contractible

 ${\it B}$ is homotopy equivalent to the 3-ball, i.e. contractible 16 – 5

Combinatorial characterizations of collapsibility

A simplicial complex K elementarily simplicially collapses onto a subcomplex L if $K = L \cup A$, where A is a simplex of K and $L \cap A = \partial A \setminus B$, where B is a facet of A.

A simplicial collapse is a finite chain of elementary simplicial collapses.

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it can be triangulated by a simplicial complex that is simplicially collapsible.

Combinatorial characterizations of collapsibility

A simplicial complex K elementarily simplicially collapses onto a subcomplex L if $K = L \cup A$, where A is a simplex of K and $L \cap A = \partial A \setminus B$, where B is a facet of A.

A simplicial collapse is a finite chain of elementary simplicial collapses.

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it can be triangulated by a simplicial complex that is simplicially collapsible.

- Two new characterizations:
- 1) In terms of zipping of posets
- 2) In terms of contructible posets

Combinatorial characterizations of collapsibility

A simplicial complex K elementarily simplicially collapses onto a subcomplex L if $K = L \cup A$, where A is a simplex of K and $L \cap A = \partial A \setminus B$, where B is a facet of A.

A *simplicial collapse* is a finite chain of elementary simplicial collapses.

Theorem (Whitehead, 1939) A polyhedron is collapsible if and only if it can be triangulated by a simplicial complex that is simplicially collapsible.

- Two new characterizations:
- 1) In terms of zipping of posets
- 2) In terms of contructible posets

A simplicial complex, and more generally a cell complex can be reconstructed from, and so will be identified with, the poset of its *nonempty* faces.

Constructible posets

We call a poset P constructible if either P has a greatest element or $P = Q \cup R$, where Q and R are order ideals (that is, if $p \leq q$ where $q \in Q$ then $p \in Q$; and similarly for R), each of Q, R and $Q \cap R$ is constructible, and every maximal element of $Q \cap R$ is covered by a maximal element of Q and by a maximal element of R.

For face posets of simplicial complexes (including the empty face!) this is Hochster's 1972 definition.

Constructible posets

We call a poset P constructible if either P has a greatest element or $P = Q \cup R$, where Q and R are order ideals (that is, if $p \leq q$ where $q \in Q$ then $p \in Q$; and similarly for R), each of Q, R and $Q \cap R$ is constructible, and every maximal element of $Q \cap R$ is covered by a maximal element of Q and by a maximal element of R.

For face posets of simplicial complexes (including the empty face!) this is Hochster's 1972 definition.

Example (Hachimori, 1998): A non-collapsible contractible polyhedron can be triangulated by a constructible simplicial complex.

Constructible posets

We call a poset P constructible if either P has a greatest element or $P = Q \cup R$, where Q and R are order ideals (that is, if $p \leq q$ where $q \in Q$ then $p \in Q$; and similarly for R), each of Q, R and $Q \cap R$ is constructible, and every maximal element of $Q \cap R$ is covered by a maximal element of Q and by a maximal element of R.

For face posets of simplicial complexes (including the empty face!) this is Hochster's 1972 definition.

Example (Hachimori, 1998): A non-collapsible contractible polyhedron can be triangulated by a constructible simplicial complex.

Theorem 6. The following are equivalent for a polyhedron X:

(i) X is collapsible;

(ii) X is triangulated by a simplicial complex whose dual poset is constructible;

(iii) X is cellulated by a cell complex whose dual poset is constructible. 18 - 3

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Then P elementarily zips onto the quotient of P by $(\{p,q,r\},\leq)$.

19 - 10
Zipping

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Then P elementarily zips onto the quotient of P by $(\{p,q,r\},\leq)$.

Lemma. If a cell complex zips onto a poset L, then L is a cell complex.

19 - 11

Zipping

Let P be a poset. Let $p \in P$ cover incomparable elements $q, r \in P$, where

- \bullet every s < p with $s \neq q, r$ satisfies s < q and s < r, and
- if s > q and s > r then $s \ge p$.

Then P elementarily zips onto the quotient of P by $(\{p,q,r\},\leq)$.

Lemma. If a cell complex zips onto a poset L, then L is a cell complex.

Theorem 7. A cell complex K zips onto a point if and only if the dual poset K^* is constructible.

PART 4

GRAPHS AND MINORS IN HIGHER DIMENSIONS

"Higher-dimensional graphs": Cohen-Macaulay cell complexes.

A cell complex K is called Cohen–Macaulay if K and its links of cells are acyclic in all dimensions except the maximal one. Equivalently, $H_i(K) = 0 = H_i(K, K \setminus p)$ for all $i < \dim K$ and every point $p \in K$.

"Higher-dimensional graphs": Cohen–Macaulay cell complexes.

A cell complex K is called Cohen–Macaulay if K and its links of cells are acyclic in all dimensions except the maximal one. Equivalently, $H_i(K) = 0 = H_i(K, K \setminus p)$ for all $i < \dim K$ and every point $p \in K$.

Lemma. If K is an n-polyhedron, $n \neq 2$, embeddable in \mathbb{R}^{2n} , then K embeds in a Cohen-Macaulay n-polyhedron, embeddable in \mathbb{R}^{2n} .

"Higher-dimensional graphs": Cohen–Macaulay cell complexes.

A cell complex K is called Cohen–Macaulay if K and its links of cells are acyclic in all dimensions except the maximal one. Equivalently, $H_i(K) = 0 = H_i(K, K \setminus p)$ for all $i < \dim K$ and every point $p \in K$.

Lemma. If K is an n-polyhedron, $n \neq 2$, embeddable in \mathbb{R}^{2n} , then K embeds in a Cohen-Macaulay n-polyhedron, embeddable in \mathbb{R}^{2n} .

But does looking at subcomplexes suffice? Why did R-S-T need minors?

"Higher-dimensional graphs": Cohen-Macaulay cell complexes.

A cell complex K is called Cohen–Macaulay if K and its links of cells are acyclic in all dimensions except the maximal one. Equivalently, $H_i(K) = 0 = H_i(K, K \setminus p)$ for all $i < \dim K$ and every point $p \in K$.

Lemma. If K is an n-polyhedron, $n \neq 2$, embeddable in \mathbb{R}^{2n} , then K embeds in a Cohen-Macaulay n-polyhedron, embeddable in \mathbb{R}^{2n} .

But does looking at subcomplexes suffice? Why did R-S-T need minors?

Lemma. Suppose that a compact *n*-polyhedron P PL embeds in \mathbb{R}^m , and $f: P \to Q$ is a PL map. Then Q embeds in \mathbb{R}^m if either (a) f is collapsible (=has collapsible point-inverses), or (b) f is cell-like (=has contractible point-inverses) and $m - n \ge 3$.

Remark. It is obvious that Q embeds in \mathbb{R}^m if Q = P/C, where C is a collapsible subpolyhedron of P. This can be iterated: $(P/C_1)/C_2$, etc.

Lemma. Collapsible maps preserve Cohen–Macaulayness.

Let K be the n-skeleton of $\Delta^{(2n+2)}$, say. It is Cohen-Macaulay. Pick an (n-1)-cell A in K whose neighborhood in K is a book with at least 3 pages.

Let K be the n-skeleton of $\Delta^{(2n+2)}$, say. It is Cohen-Macaulay. Pick an (n-1)-cell A in K whose neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages C, with the boundary spheres in the binding A.

K

 K_{r}

Let K be the n-skeleton of $\Delta^{(2n+2)}$, say. It is Cohen-Macaulay. Pick an (n-1)-cell A in K whose neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages C, with the boundary spheres in the binding A.

Now shrink each of these r balls to a point. The result is a new polyhedron K_r , where C is shrunk onto the wedge of r + 1 balls C_0, \ldots, C_r .

K

 K_{r}

Let K be the n-skeleton of $\Delta^{(2n+2)}$, say. It is Cohen-Macaulay. Pick an (n-1)-cell A in K whose neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages C, with the boundary spheres in the binding A.

Now shrink each of these r balls to a point. The result is a new polyhedron K_r , where C is shrunk onto the wedge of r + 1 balls C_0, \ldots, C_r .

Since K_r is a collapsible image of K, all proper subpolyhedra of K_r embed in \mathbb{R}^{2n} .

Let K be the n-skeleton of $\Delta^{(2n+2)}$, say. It is Cohen-Macaulay. Pick an (n-1)-cell A in K whose neighborhood in K is a book with at least 3 pages.

Pick r disjoint codimension one balls in one of the pages C, with the boundary spheres in the binding A.

Now shrink each of these r balls to a point. The result is a new polyhedron K_r , where C is shrunk onto the wedge of r + 1 balls C_0, \ldots, C_r .

Since K_r is a collapsible image of K, all proper subpolyhedra of K_r embed in \mathbb{R}^{2n} .

Also K_r does not embed in \mathbb{R}^{2n} since it admits a collapsible map onto K: shrink the wedge of the balls C_1, \ldots, C_r to a point.

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist pairwise non-homeomorphic *n*-dim simplicial complexes K_1, K_2, \ldots such that each K_i does not embed in \mathbb{R}^{2n} but every its proper minor does.

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist provide non-homeomorphic *n*-dim simplicial complexes K_1, K_2, \ldots such that each K_i does not ended in \mathbb{R}^{2n} but every its proper minor does.

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist provide non-homeomorphic *n*-dim simplicial complexes K_1, K_2, \ldots such that each K_i does not ended in \mathbb{R}^{2n} but every its proper minor does.

Problem II. Given an n, are there only finitely many n-dimensional Cohen–Macalulay cell complexes that do not embed in \mathbb{R}^{2n} while all their proper minors embed? (Yes \Rightarrow a higher-dim. Kuratowski theorem.)

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist paravise non-homeomorphic p-dim simplicial complexes K_1, K_2, \ldots such that each K_i does not ended in \mathbb{R}^{2n} but every its proper minor does.

Problem II. Given an n, are there only finitely many n-dimensional Cohen–Macalulay cell complexes that do not embed in \mathbb{R}^{2n} while all their proper minors embed? (Yes \Rightarrow a higher-dim. Kuratowski theorem.)

Theorem 8. If K is the n-skeleton of a dichotomial (2n + 1)-sphere, $n \neq 2$ (resp. of a dichotomial (2n + 2)-sphere), then all its proper minors embed in \mathbb{R}^{2n} (resp. linklessly embed in \mathbb{R}^{2n+1}).

23 - 6

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist provide non-homeomorphic *n*-dim simplicial complexes K_1, K_2, \ldots such that each K_i does not ended in \mathbb{R}^{2n} but every its proper minor does.

Problem II. Given an n, are there only finitely many n-dimensional Cohen–Macalulay cell complexes that do not embed in \mathbb{R}^{2n} while all their proper minors embed? (Yes \Rightarrow a higher-dim. Kuratowski theorem.)

Theorem 8. If K is the n-skeleton of a dichotomial (2n + 1)-sphere, $n \neq 2$ (resp. of a dichotomial (2n + 2)-sphere), then all its proper minors embed in \mathbb{R}^{2n} (resp. linklessly embed in \mathbb{R}^{2n+1}).

 $(\Rightarrow$ Theorem 1.)

23 - 7

Remark. A zipping induces a collapsible map between the cell complexes. Conversely, every collapsible map can be triangulated by a simplicial map whose fibers zip onto points.

Example (Zaks–Nevo). For each n > 1 there exist provides non-homeomorphic n-dim simplicial complexes K_1, K_2, \ldots such that each K_i does not ended in \mathbb{R}^{2n} but every its proper minor does.

Problem II. Given an n, are there only finitely many n-dimensional Cohen–Macalulay cell complexes that do not embed in \mathbb{R}^{2n} while all their proper minors embed? (Yes \Rightarrow a higher-dim. Kuratowski theorem.)

Theorem 8. If K is the n-skeleton of a dichotomial (2n + 1)-sphere, $n \neq 2$ (resp. of a dichotomial (2n + 2)-sphere), then all its proper minors embed in \mathbb{R}^{2n} (resp. linklessly embed in \mathbb{R}^{2n+1}).

 $(\Rightarrow$ Theorem 1.)

Problem III. Given an m, is the number of dichotomial m-spheres finite?

References

- Combinatorics of embeddings, arXiv:1103.5457 (to be updated)
- The van Kampen obstruction and its relatives, Proc. Steklov Math. Inst. (2009) = arXiv:math.GT/0612082

- 3. Digression: Combinatorics of collapsing
- Combinatorics of combinatorial topology, arXiv:1208.6309