Prime knots whose arc index is smaller than the crossing number

Gyo Taek Jin (joint with Hwa Jeong Lee)

Korea Advanced Institute of Science and Technology

August 20, 2010

International Workshop on Spatial Graphs 2010 Waseda University, Tokyo

Arc presentation and arc index

An *arc presentation* of a knot or a link L is an ambient isotopic image of L contained in the union of finitely many half planes, called *pages*, with a common boundary line in such a way that each half plane contains a properly embedded single arc.

Figure 1: An arc presentation of the figure eight knot

The minimal number of pages among all arc presentations of a link L is called the *arc index* of L and is denoted by $\alpha(L)$.

1

Methods of describing arc presentation

Figure 2: Representations of arc presentation

- (Cromwell, 1995) Every link admits an arc presentation.
- (Nutt, 1999) All knots up to arc index 9 are identified.
- (Bae-Park, 2000)
 α(L) = c(L) + 2 if and only if a non-split link L is alternating.
 (Knot-spoke diagrams are used for the proof.)
- (Beltrami, 2002) Arc index for prime knots up to 10 crossings are determined.
- (Jin et al., 2006) All prime knots up to arc index 10 are identified.
- (Ng, 2006) Arc index for prime knots up to 11 crossings are determined.
- (Jin-Park, 2007) All prime knots up to arc index 11 are identified. A prime link L is *nonalternating* if and only if $\alpha(L) \leq c(L)$.

A *wheel diagram* is finite plane graph of straight edges which are incident to a single vertex. The projection of an arc presentation of a knot or a link into the *xy*-plane is of this shape.

Figure 3: Wheel Diagrams of the figure-eight knot

For a wheel diagram with n edges to represent a knot or a link, each edge must be labeled with an unordered pair of distinct integers so that each of the integers, $1, 2, \dots, n$ appear exactly twice in the wheel diagram. These number indicate the z-levels of the end point of the corresponding arcs.

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

Knot-spoke Diagram

A *knot-spoke diagram* D^* is a finite connected plane graph satisfying

- 1. There are three kinds of vertices in D^* ; a *distinguished vertex* v_0 with valency at least four, 4-valent vertices, and 1-valent vertices.
- 2. Every edge incident to a 1-valent vertex is also incident to v_0 . Such an edge is called a *spoke*.

Figure 4: Knot-spoke diagrams

Prime knot-spoke diagrams

A knot-spoke diagram D^* is said to be *prime* if no simple closed curve meeting D^* in two interior points of edges separates multi-valent vertices into two parts.

Figure 5: Prime diagram and non-prime diagram

A multi-valent vertex v of a knot-spoke diagram D^* is said to be a *cut-point* if there is a simple closed curve S meeting D^* in v and separating non-spoke edges into two parts.

Figure 6: Cut-point

- A cut-point free knot-spoke diagram with more than one non-spoke edges cannot have a loop.
- If a prime knot-spoke diagram D^* has a cut-point, then the distinguished vertex v_0 must be the cut-point with valency bigger than four.

Contracting an edge incident to v_0

Let e be an edge of a cut-point free knot-spoke diagram D^* as in the figure. The knot-spoke diagram $(D^*)_e$ is obtained by

- contracting e and
- replacing any simple loop thus created by a spoke.

Figure 7: Contraction of an edge in D^*

A loop in a knot-spoke diagram is said to be *simple* if the other non-spoke edges are in one side of it.

D^{\star} and $(D^{\star})_e$

There are important facts to point out.

- 1. D^* and $(D^*)_e$ represent the same knot or link.
- 2. The sum of the number of regions divided by the non-spoke edges and the number of spokes is unchanged.
- 3. $(D^*)_e$ is prime if D^* is prime.

Wheel diagram with c(D) + 2 spoke

Starting from a knot diagram D, we end up with a knot-spoke diagram with c(D) spokes and only one non-spoke edge which is a non-simple loop where c(D) is the number of crossings in D.

Figure 8: Folding the last non-spoke edge

The last non-spoke edge, which is a loop, is being folded to create two extra spokes. This shows the inequality $\alpha(L) \leq c(L) + 2$.

A process converting 4_1 into a wheel diagram

- Choose a vertex v_0 and put labels on the two edges meeting at v_0 , to assign vertical levels of the overpass and the underpass.
- Choose an edge *e* to contract and assign the label of a new level at the edges crossing *e* at the other end which is the lowest if the crossing is an undercrossing and the highest otherwise.
- Contract the edge and replace each simple loop with a spoke and label it with the two labels of the loop.

Filtered spanning Tree of a Knot Diagram

Let D be a knot diagram. We may consider D as a connected 4-valent plane graph with c(D) vertices and 2c(D) edges.

A spanning tree of D is a tree which contains all the vertices of D.

A *filtered spanning tree* of D is an increasing sequence

 $T_0 \subset T_1 \subset T_2 \subset \cdots \subset T_{c(D)-1}$

The *closure* of T_i , denoted by \overline{T}_i , is the subgraph of D obtained from T_i by adding the edges which are incident T_i at both ends.

International Workshop on Spatial Graphs 2010

Edges not contained in the spanning tree

An edge e of $\overline{T}_i \setminus \overline{T}_{i-1} \subset D$ is said to be *good* if e meets the edge $T_i \setminus T_{i-1}$ transversely at the vertex not contained in T_{i-1} .

An edge e of $\overline{T}_i \setminus \overline{T}_{i-1} \subset D$ is said to be *bad* if e meets the edge $T_i \setminus T_{i-1}$ vertically at the vertex not contained in T_{i-1} .

Figure 9: Good edges and a bad edge

Good filtered tree and Good filtered spanning tree

Let $T_0 \subset T_1 \subset \cdots \subset T_m$ be a filtered tree in a diagram D which does not span D. If the knot-spoke diagram obtained by contraction of the edges $e_i = T_i \setminus T_{i-1}, i = 1, \ldots, m$ is cut-point free, we say that the *filtered tree is* good.

A filtered spanning tree $T_0 \subset T_1 \subset T_2 \subset \cdots \subset T_{c(D)-1}$ is said to be good if $T_0 \subset T_1 \subset \cdots \subset T_m$ is good filtered tree for each $m, 1 \leq m \leq c(D) - 2$ and there is only one 'bad' edge in D which belongs to $D \setminus \overline{T}_{c(D)-1}$.

Theorem 1 (Bae-Park, 2000) A prime link diagram D admits a good filtered spanning tree and therefore we can obtain an arc presentation with c(D) + 2 arcs.

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

Good filtered tree (Cont.)

Proposition 2 Let $T_0 \subset T_1 \subset \cdots \subset T_m$ be a filtered tree in a diagram D which does not span D. Then the following are equivalent.

- 1. Every edge of $\overline{T}_m \setminus T_m$ is a good edge, and a sufficiently small neighborhood of \overline{T}_m has connected exterior in D.
- 2. The filtered tree is good.

Corollary 3 Let $T_0 \subset T_1 \subset \cdots \subset T_m$ be a good filtered tree in a diagram D which does not span D. Let e be an edge in D such that $T_m \cap e$ is a single vertex, so that $T_m \cup e$ is a tree. If $T_0 \subset T_1 \subset \cdots \subset T_m \subset (T_m \cup e)$ is not a good filtered tree, then one of the following holds.

- $\overline{T_m \cup e}$ has a bad edge.
- A sufficiently small neighborhood of $\overline{T_m \cup e}$ has disconnected exterior in D.

Cutting arc

Let T be a filtered tree in D which does not span D. A simple arc Γ is called a *cutting arc* of T if it is satisfies the following conditions.

- 1. $\Gamma \cap D$ consists of the endpoints of Γ which are two distinct vertices of T.
- 2. A proper subcollection of edges of $D \setminus \overline{T}$ is enclosed by the simple closed curve $\overline{\Gamma}$ constructed by Γ and the path in T joining the endpoints of Γ .

Figure 10: Cutting arc of a filtered tree

Doubly good edges

A good edge $e \subset \overline{T}_i \setminus \overline{T}_{i-1}$ is said to be *doubly good* if the three edges e, $e_i = T_i \setminus T_{i-1}$, and $e_{i-1} = T_{i-1} \setminus T_{i-2}$ together bound a nonalternating triangular region in D/T_{i-2} .

The doubly good edge on the filtered tree corresponds to removable spoke in the knot-spoke diagram obtained by contraction of edges in T_i .

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

Doubly good edges (Cont.)

It is known that every prime nonalternating diagram admits a good filtered spanning tree having at least two doubly good edges.

Theorem 4 (Jin-Park, 2007) A prime link L is nonalternating if and only if $\alpha(L) \leq c(L)$.

Theorem 5 A prime diagram D of a nonalternating knot has a good filtered spanning tree which has at least two doubly good edges. Furthermore, if there are d doubly good edges, then one can obtain an arc presentation with c(D) + 2 - d arcs.

International Workshop on Spatial Graphs 2010

Goal

Arc presentation	Wheel diagram	Good filtered spanning tree
properly simple arc	spoke	good edge
removable arc	removable spoke	doubly good edge

Goal : To construct a good filtered tree to find as many doubly good edges as possible.

Supporting arc and String \overrightarrow{ve}

For two regions R and S in a diagram, an arc Δ is said to be a *supporting* arc of R and S if Δ consists of at least 3 edges and one of the end edges of Δ is one of the boundary edges of R and the other is one of the boundary edges of S.

A string from a vertex v extending e in a knot diagram D is a portion of D that goes from v passing through e along D and is denoted by \overrightarrow{ve} .

Figure 12: Supporting arc and String \overrightarrow{ve}

Three types of nonalternating diagram

Let $n \ge 2$. A nonalternating knot diagram D is said to be (n, 1)-nonalternating if it can be decomposed of two alternating tangles one of which is an (n, 1)-tangle.

Let $n \ge 1$. A nonalternating knot diagram D is said to be *n*-nonalternating if it can be decomposed of two alternating tangles one of which is an *n*-tangle.

A 1-nonalternating diagram is also called an *almost alternating diagram*.

(a) The (n, 1)-tangle (b) The *n*-tangle (c) The 1-tangle Figure 13: Tangles Let D be a prime (n, 1)-nonalternating minimal crossing knot diagram having a nonalternating triangular region with some edges and regions labeled as in Figure 14 for some integer $n \ge 2$. Then $\alpha(D) < c(D)$ if Dsatisfies the two conditions below:

Figure 14: (2, 1)-nonalternating diagram

Theorem A (Cont.)

- 1. The string $\overrightarrow{q_1e_4}$ and at least one of the two strings $\overrightarrow{q_1e_{51}}$, $\overrightarrow{q_2e_{52}}$ meet at a crossing before they become incident to the region R_2 , or there is a supporting arc of R_4 and R_5 which does not contain any edge of ∂R_2 and ∂R_3 .
- 2. At least one of the three strings $\overrightarrow{q_1e_4}, \overrightarrow{q_1e_{51}}, \overrightarrow{q_2e_{52}}$ is incident to R_2 before or at the same time to R_1 , or there is a supporting arc of R_4 and R_5 , not incident to R_3 , whose extension is incident to R_2 before or at the same time to R_1 .

Diagrams on which Theorem A can be applied

International Workshop on Spatial Graphs 2010

Let D be a prime, (n)-nonalternating and minimal crossing knot diagram having a nonalternating triangular region. If D satisfies the condition 1, 2, and 3 where the regions and edges near the nonalternating triangular region are labeled as in Figure 15. Then $\alpha(D) < c(D)$.

Figure 15: 2-nonalternating diagram

Theorem B (Cont.)

- 1. String $\overrightarrow{q_1e_4}$ and at least one of the two strings $\overrightarrow{q_1e_{51}}$, $\overrightarrow{q_2e_{52}}$ meet at a crossing before they become incident to the regions R_1 or R_2 , or there is a supporting arc of R_4 and R_5 which does not contain any edge of R_1 , R_2 and R_3 .
- 2. At least one of the three strings $\overline{q_1e_4}$, $\overline{q_1e_{51}}$, $\overline{q_2e_{52}}$ is incident to R_2 before or at the same time to R_1 , or there is a supporting arc of R_4 and R_5 , not incident to R_3 , whose extension is incident to R_2 before or at the same time to R_1 .
- 3. R_2 is bounded by at least n + 3 edges.

Diagrams on which Theorem B can be applied

Let D be a prime, almost alternating, and minimal crossing knot diagram having a nonalternating triangular region. If D satisfies the condition 1, 2, 3 where the regions and edges near the nonalternating triangular region are labeled as in Figure 16. Then $\alpha(D) < c(D)$

Figure 16: Almost alternating diagram

Theorem C (Cont.)

- 1. $\overrightarrow{q_1e_4}$ and at least one of $\overrightarrow{q_1e_{51}}$, $\overrightarrow{q_2e_{52}}$ meet at a crossing before they become incident to the regions R_1 or R_2 , or there is a supporting arc of R_4 and R_5 which does not contain any edge of R_1 , R_2 and R_3 .
- 2. At least one of the three strings $\overrightarrow{q_1e_4}$, $\overrightarrow{q_1e_{51}}$, $\overrightarrow{q_2e_{52}}$ is incident to R_2 before or at the same time to R_1 , or there is a supporting arc of R_4 and R_5 , not incident to R_3 , whose extension is incident to R_2 before or at the same time to R_1 .
- 3. At least one of $\overrightarrow{q_1e_4}$, $\overrightarrow{q_1e_{51}}$ is incident to R_1 at v_0 for the first time without being incident to R_2 .

A diagram on which Theorem C can be applied

Waseda University, August 17-21, 2010

A sketch of proof of Theorem A

Let D' be the diagram obtained from D by a type 3 Reidemeister move over the region R_3 as in Figure 17.

Figure 17: (2,1)-nonalternating diagram after a type 3 Reidemeister move

We construct a good filtered tree whose closures gradually contain $\partial R'_1, \partial R'_2$ and $\partial R'_3$. Let $\overline{v_i v_j}$ denote the edge joining v_i and v_j . The edges $\overline{v_2 v_3}$, $\overline{v_4 v_5}$ and $\overline{v_6 v_7}$ will become doubly good edges.

A sketch of proof of Theorem B

Let D' be the diagram obtained from D by a type 3 Reidemeister move over the region R_3 as in Figure 18.

Figure 18: 2-nonalternating diagram after a type 3 Reidemeister move

We construct a good filtered tree whose closures gradually contain $\partial R'_1, \partial R'_2$ and $\partial R'_3$. The edges $\overline{v_1v_2}$, $\overline{v_3v_4}$ and $\overline{v_5v_6}$ will become doubly good edges.

A sketch of proof of Theorem C

Let D' be the diagram obtained from D by a type 3 Reidemeister move over the region R_3 as in Figure 19.

Figure 19: Almost alternating diagram after a type 3 Reidemeister move

We construct a good filtered tree whose closures gradually contain $\partial R'_1, \partial R'_2$ and $\partial R'_3$. The edges $\overline{v_1v_2}$, $\overline{v_3v_4}$ and $\overline{v_4v_5}$ will become doubly good edges.

An Example of Theorem A

Figure 20: (2, 1)-nonalternating diagram : 13n2004

Examples of Theorem A

(knots with arc index 12)

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

International Workshop on Spatial Graphs 2010

International Workshop on Spatial Graphs 2010

Waseda University, August 17-21, 2010

Examples related to Theorem A (k

An Example Theorem B

Figure 21: 2-nonalternating diagram : 13n2942

Examples of Theorem B (knots

(knots with arc index 12)

13n4897

13n4386

Examples related to Theorem B

(knots with arc index 12)

13n3475

13n3047

13n4308

An Example of Theorem C

Figure 22: Almost alternating diagram : 13n0635

(knots with arc index 12)

Knots whose arc index equals crossing number (1)

Figure 23: $\alpha(9n8) = 9$, $\alpha(10n41) = 10$

International Workshop on Spatial Graphs 2010

Knots whose arc index equals crossing number (2)

Figure 24: $\alpha(10n42) = 10, \alpha(11n163) = 11$

International Workshop on Spatial Graphs 2010

Knots whose arc index equals crossing number (3)

Figure 25: $\alpha(10n24) = 10, \alpha(11n85) = 11$

International Workshop on Spatial Graphs 2010

Knots whose arc index equals crossing number (4)

Figure 26: $\alpha(11n113) = 11$, $\alpha(11n169) = 11$

International Workshop on Spatial Graphs 2010

Knots whose arc index equals crossing number (5)

Figure 27: $\alpha(11n93) = 11$, $\alpha(11n124) = 11$

International Workshop on Spatial Graphs 2010

Knots whose arc index equals crossing number (6)

Figure 28: $\alpha(11n121) = 11$, $\alpha(11n127) = 11$

International Workshop on Spatial Graphs 2010

Thank you very much.

International Workshop on Spatial Graphs 2010