Multiplicity distance of spatial graphs

Kouki Taniyama

Waseda University

International Workshop on Spatial Graphs 2010 August 20, 2010 $\S1$. Multiplicity in a category

 $\S2.$ Multiplicity category of knots and its distance

 $\S3.$ Multiplicity category of spatial graphs and its distance

$\S1.$ Multiplicity in a category

$$\mathcal{C} = (\mathcal{O}, \{\operatorname{Hom}(X, Y)\}_{X, Y \in \mathcal{O}}, \circ) : \text{category}$$

$$\forall \varphi \in \operatorname{Hom}(X, Y), \forall \psi \in \operatorname{Hom}(Y, Z), \ \psi \circ \varphi \in \operatorname{Hom}(X, Z) \text{ is}$$

defined.

Notation: $\varphi \in \operatorname{Hom}(X, Y) \Leftrightarrow \varphi : X \to Y$

(1)
$$\forall \varphi : X \to Y, \forall \psi : Y \to Z, \forall \tau : Z \to W,$$

 $(\varphi \circ \psi) \circ \tau = \varphi \circ (\psi \circ \tau)$
(2) $\forall X \in \mathcal{O}, \exists id_X : X \to X \text{ s.t.}$
 $\forall \varphi : X \to Y, \varphi \circ id_X = \varphi$
 $\forall \psi : Y \to X, id_X \circ \psi = \psi$
(3) $\operatorname{Hom}(X, Y) \cap \operatorname{Hom}(Z, W) \neq \emptyset$
 $\Rightarrow X = Z \text{ and } Y = W$

Definition.

$$m: \bigcup_{(X,Y)\in\mathcal{O}\times\mathcal{O}} \operatorname{Hom}(X,Y) \to \mathbb{N} \cup \{\infty\}$$

is a multiplicity on $\ensuremath{\mathcal{C}}$

$$\stackrel{\mathrm{def}}{\longleftrightarrow} (1) \ ^{\forall} X \in \mathcal{O}, \ \textit{m}(\mathrm{id}_X) = 1, \ \mathrm{and} \\ (2) \ ^{\forall} \varphi : X \to Y, \ ^{\forall} \psi : Y \to Z, \ \ \textit{m}(\psi \circ \varphi) \leq \textit{m}(\varphi)\textit{m}(\psi).$$

Here $\forall n \in \mathbb{N}$, $n \leq \infty$, $n \cdot \infty = \infty \cdot n = \infty$,

 $\infty \leq \infty$, $\infty \cdot \infty = \infty$.

Definition. $X, Y \in \mathcal{O}$

$$m(X:Y) = \min\{m(\varphi) \mid \varphi \in \operatorname{Hom}(X,Y)\}$$

multiplicity of X over Y with respect to m

Proposition. *m*: multiplicity on C (1) $\forall X \in \mathcal{O}$, m(X : X) = 1(2) $\forall X, Y, Z \in \mathcal{O}$, $m(X : Z) \le m(X : Y)m(Y : Z)$. $\substack{\text{def} \\ \Longleftrightarrow \\ \forall X, Y \in \mathcal{O}, \ m(X : Y) < \infty }$

Definition.

$$d_m(X,Y) = \log_e(m(X:Y)m(Y:X))$$

m-distance of X and Y

Proposition. m: multiplicity on C with FMP (\mathcal{O}, d_m) is a pseudo metric space i.e. $(D1') d_m(X, Y) \ge 0, d_m(X, X) = 0,$ $(D2) d_m(X, Y) = d_m(Y, X),$ $(D3) d_m(X, Z) \le d_m(X, Y) + d_m(Y, Z).$ **Example.** C: subcategory of the category of sets and maps (SET) $X, Y \in O, f : X \to Y$

$$m(f) = \sup\{|f^{-1}(y)||y \in Y\}$$

m: map multiplicity

Proposition. map multiplicity is a multiplicity, i.e. (1) $\forall X \in \mathcal{O}, m(id_X) = 1$, and (2) $\forall f : X \to Y, \forall g : Y \to Z,$ $m(g \circ f) \leq m(f)m(g)$ Example.

Remark. There are canonical functors from TOP, GROUP, etc. to SET.

Example.

 $m(K_5:\mathbb{S}^1)=3$, $m(\mathbb{S}^1:K_5)=1$ $d_m(K_5,\mathbb{S}^1)=\log_e(3\cdot 1)=\log_e 3$

Example. R: PID, M, N: R-modules finitely generated over R

r(M): the minimal number of generators of M over R

 $f: M \rightarrow N : R$ -linear map

$$m_{
m ker}(f)=e^{r(
m ker f)}$$

$$m_{\rm coker}(f) = e^{r({\rm coker}f)}$$

 $(\operatorname{coker} f = N/f(M))$

Proposition. (1) m_{ker} is a multiplicity. (2) m_{coker} is a multiplicity.

Proposition. (1) $d_{m_{ker}}(M, N) = 0 \Leftrightarrow M \stackrel{R}{\cong} N.$ (2) $d_{m_{coker}}(M, N) = 0 \Leftrightarrow M \stackrel{R}{\cong} N.$

When R is a field,

M and N are finite dimensional vector spaces over R, and

$$d_{m_{\mathrm{ker}}}(M,N) = d_{m_{\mathrm{coker}}}(M,N) = |\mathrm{dim}M - \mathrm{dim}N|.$$

§2. Multiplicity category of knots and its distance

 $\mathcal{K}:$ oriented knot types in $\mathbb{S}^3,~\textit{K}_1,\textit{K}_2\in\mathcal{K}$

 $f = (V_2, k_1)$ is a morphism from K_1 to K_2

 $\stackrel{\text{def}}{\iff} V_2 \subset \mathbb{S}^3 : \text{1-oriented knotted solid torus with knot type } K_2,$ $k_1 \subset \operatorname{int} V_2 : \text{ oriented knot in } \mathbb{S}^3 \text{ with knot type } K_1.$

 $(V, k) = (V', k') \iff \exists h : \mathbb{S}^3 \to \mathbb{S}^3$ ori. preserving homeo. s.t. h(V) = V' respecting 1-orientation, and h(k) = k' respecting orientation $\operatorname{Hom}(K_1, K_2)$: the set of morphisms from K_1 to K_2

 $f: K_1 \to K_2, g: K_2 \to K_3, f = (V_2, k_1), g = (V_3, k_2)$ V'_2: regular neighbourhood of k_2 with V'_2 $\subset int V_3, k'_1$: knot in V'_2 s.t. $(V'_2, k'_1) = (V_2, k_1)$ $g \circ f = (V_3, k'_1)$ Example.

R₂ \bigcirc K3 K₁ $f:K_1 \rightarrow K_2$ $g:K_2 \rightarrow K_3$ $g \circ f : K_1 \to K_3$

Proposition. $C_{\mathcal{K}} = (\mathcal{K}, {\text{Hom}(\mathcal{K}, J)}_{\mathcal{K}, J \in \mathcal{K}}, \circ)$ is a category.

 $\mathcal{C}_{\mathcal{K}}$: multiplicity category of Knots

 $id_{\mathcal{K}} : \mathcal{K} \to \mathcal{K}$ is given by $id_{\mathcal{K}} = (\mathcal{V}, k)$ where \mathcal{V} is a regular neighbourhood of a knot k with knot type \mathcal{K} .

Definition. $f : K_1 \to K_2$: morphism, $f = (V_2, k_1)$, $h : V_2 \to \mathbb{S}^1 \times \mathbb{D}^2$: homeo. $\pi : \mathbb{S}^1 \times \mathbb{D}^2 \to \mathbb{S}^1$: natural projection

 $h ext{ is generic} \stackrel{ ext{def}}{\Longleftrightarrow} \pi \circ h|_{k_1} : k_1 o \mathbb{S}^1 ext{ is a Morse map,}$

i.e. it has only finitely many critical points in different levels.

$$\begin{split} & m(h) = \max\{|(\pi \circ h|_{k_1})^{-1}(y)| \mid y \in \mathcal{S}^1\} \\ & m(f) = \min\{m(h) \mid h : V_2 \to \mathbb{S}^1 \times \mathbb{D}^2 \text{ generic homeomorphism}\} \end{split}$$

Proposition. *m* is a multiplicity on $C_{\mathcal{K}}$ with FMP.

Example.

Proposition. (1) $f : K_1 \to K_2$, $m(f) = 1 \Rightarrow K_1 = \pm K_2$. (2) $m(K_1 : K_2) = 1 \Leftrightarrow K_1 = \pm K_2$. (3) $d_m(K_1, K_2) = 0 \Leftrightarrow K_1 = \pm K_2$.

Proposition. (\mathcal{K}, d_m) is an unbounded pseudo-metric space.

 d_m : multiplicity distance of knots

Proposition. $K, J \in \mathcal{K}$

(1) $m(K: 0_1) \leq braid(K)$

(2) $m(K: 0_1) \leq 2bridge(K) - 1$

(3) $m(K:J) = 2 \Rightarrow K$ is a (2,p)- cable of J, or $K = 0_1$.

Definition. $K \in \mathcal{K}$, $m(K) = m(K : 0_1)$ multiplicity of K, $m(K) \in \mathbb{N}$

Remark. $m(K) \leq n \Leftrightarrow d_m(K, 0_1) \leq \log_e 2n$.

Proposition. $K \in \mathcal{K}$ (1) $m(K) = 1 \Leftrightarrow K = 0_1$. (2) $m(K) = 2 \Leftrightarrow K$ is a (2, p)-torus knot. (3) $m(K) = 3 \Leftrightarrow K \neq 0_1$, K is not a (2, p)-torus knot, and (a) K is a closed 3-braid, or (b) K is a connected sum of some 2-bridge knots.

Proposition. *K*:*Montesinos* $knot \Rightarrow m(K) \leq 4$.

§3. Multiplicity category of spatial graphs and its distance

SG: finite graphs embedded in \mathbb{S}^3 , $G_1, G_2 \in SG$ $f: \mathbb{S}^3 \to \mathbb{S}^3$: degree 1 map such that $f(G_1) \subset G_2$ (f, G_1, G_2) is a morphism from G_1 to G_2 $G_1, G_2, G_3 \in SG$ $f: \mathbb{S}^3 \to \mathbb{S}^3$: degree 1 map such that $f(G_1) \subset G_2$ $g: \mathbb{S}^3 \to \mathbb{S}^3$: degree 1 map such that $g(G_2) \subset G_3$ $g \circ f : \mathbb{S}^3 \to \mathbb{S}^3$: degree 1 map such that $g \circ f(G_1) \subset G_3$ $(g, G_2, G_3) \circ (f, G_1, G_2) = (g \circ f, G_1, G_3)$

 $Hom(G_1, G_2)$: the set of morphisms from G_1 to G_2

Proposition. $C_{SG} = (SG, {Hom}(G_1, G_2))_{G_1, G_2 \in SG}, \circ)$ is a category.

 $\mathcal{C}_{\mathrm{SG}}$: multiplicity category of spatial graphs

 $(f, G_1, G_2) \in \operatorname{Hom}(G_1, G_2)$

$$m(f, G_1, G_2) = \sup\{|f^{-1}(y) \cap G_1||y \in G_2\}$$

Proposition. *m* is a multiplicity on C_{SG} with FMP.

Example.

Proposition. (SG, d_m) is a pseudo-metric space.

 d_m : multiplicity distance of spatial graphs

 G_1, G_2 : trivalent graphs in \mathbb{S}^3 $d_{IH}(G_1, G_2)$: IH-distance defined by A. Ishii and K. Kishimoto

Proposition. G_1, G_2 : trivalent graphs in \mathbb{S}^3 , $d_m(G_1, G_2) \le 2(\log_e 3)d_{IH}(G_1, G_2).$

Thank you