itions	Related Theorems	Linear K7 and Oriented Matroids	Main Results and Examples

Defi

Number of Knots and Links in Linear K_7

Choon Bae Jeon¹ Gyo Taek Jin² Hwa Jeong Lee² Seo Jung Park² Hong Jun Huh³ Jae Wook Jung³ Woong Sik Nam³ Min Suk Sim³

¹Daeduk University

²Korea Advanced Institute of Science and Technology

³Korea Science Academy of KAIST

International Workshop on Spatial Graphs 2010

(日) (日) (日) (日) (日) (日) (日)

Definitions 0000	Related Theorems	Linear <i>K</i> ₇ and Oriented Matroids	Main Results and Examples
Contents			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definitions ●000	Related Theorems	Linear <i>K</i> ₇ and Oriented Matroids	Main Results and Exampl

- A *m*-component *link* is a union of *m* disjoint circles embedded in \mathbb{R}^3 .
- A *knot* is a 1-component link.

Knots and Links

- Two links L and L' are ambient isotopic, L ~ L', if there exists a self-homeomorphism Φ on ℝ³ such that Φ(L) = L'.
- The *link type* of *L* is the ambient isotopy class of *L*.
- *L* is *trivial* if $L \sim$ disjoint circles embedded in a plane of \mathbb{R}^3 .

(日) (日) (日) (日) (日) (日) (日)

Definitions ○●○○	Related Theorems	Linear <i>K</i> ₇ and Oriented Matroids	Main Results and Examples
Polygona	l Links (1)		

- A *polygonal link* is a link consisting of finitely many straight line segments(*edges*) whose endpoints are called *vertices*.
- Trefoil knot, Figure-8 knot

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definitions ○○●○	Related Theorems	Linear K ₇ and Oriented Matroids	Main Results and Examples

Polygonal Links (2)

• Hopf link, {2,4}-Torus link

- For a link type L, polygon index p(L) is the minimal number of the line segments required to realize L as a polygon or a union of polygons.
- p(Trefoil) = 6, p(Figure-8) = 7, p(Hopf link) = 6, p({2,4}-Tours link) = 7 and p(L) ≥ 8 for any other non-trivial link type L.

Main Results and Examples

Complete Graphs and Linear Embeddings

- *K_n* is the *complete graph* with *n* vertices.
- A *linear (embedding of)* K_n is an embedding of K_n into ℝ³ such that each edge of K_n is mapped onto a line segment.
- A subgraph of *K_n* which is homeomorphic to the circle is called a *cycle* of *K_n*.
- A cycle of K_n is a k-cycle if it contains exactly k edges. An n-cycle of K_n is called a Hamiltonian cycle.
- (k, I)-cycle is a disjoint pair of a k-cycle and an I-cycle of K_n.

Linear K_7 and Oriented Matroids

Main Results and Examples

Knots and Links in K_n

Theorem (Conway-Gordon (1983))

- Any embedding of K₆ contains at least one non-trivial link as one of its (3,3)-cycle.
- Any embedding of K₇ contains at least one non-trivial knot as one of its Hamiltonian cycle.

Theorem (Negami (1991))

For any knot type \mathcal{K} , there exists a natural number $N(\mathcal{K})$ such that every linear embedding of $K_{N(\mathcal{K})}$ contains a polygonal knot of the type \mathcal{K} .

Definitions	Related Theorems	Linear K_7 and Oriented Matroids	Main Results
	00000		

Links in Linear K₇

Theorem (Hughes (2006))

A linear K₆ contains at most three Hopf links.

Theorem (Fleming-Mellor (2009))

Any linear K₇ contains at least twenty-one non-trivial links.

Theorem (Ludwig-Arbisi (2009))

The minimum number of non-trivial links in any linear K_7 which forms a convex polyhedron of seven vertices is twenty-one and the maximum number of non-trivial links in K_7 is forty-eight.

and Examples

Definitions	Related Theorems	Linear K ₇ and Oriented Matroids	Main Results and Examp
	00000		

Knots in Linear K_7

Theorem (Brown (1977), Alfonsín (1999), Nikkuni (2008))

Any linear K_7 contains at least one trefoil knot. N(trefoil) = 7.

Theorem (Foisy-Ludwig (2009))

A linear embedding of K_7 which forms a convex polyhedron of seven vertices may have at most fourteen non-trivial knots.

Theorem (Huh (2009))

A linear K₇ contains at most three figure-8 knots.

Main Results and Examples

Knots and Links in Linear K_7 (1)

Theorem (Huh-Jeon (2007), Nikkuni (2008))

A linear K_6 contains at most one trefoil and at most three Hopf links.

- A linear K₆ contains a trefoil if and only if it contains exactly three Hopf links.
- A linear K₆ does not contain a trefoil if and only if it contains exactly one Hopf link.

Number of Knots and Links in Linear K_6				
Hopf Trefoil				
1	0			
3	1			

Main Results and Examples

Knots and Links in Linear K_7 (2)

Corollary (Nikkuni (2008))

A linear K_7 contains *n* trefoils as its 6-cycles if and only if it contains 2n + 7 Hopf links as its (3,3)-cycles.

Theorem (Nikkuni (2008))

For any linear embedding f of K_7 , $\sum_{\gamma \in \Gamma_7(K_7)} a_2(f(\gamma)) = 1$ if and only if non-trivial 2-component links in $f(K_7)$ are exactly twenty-one Hopf links.

Corollary

A linear K_7 contains one more trefoils than figure-8 knots among its 7-cycles if and only if it contains exactly twenty-one Hopf links.

Linear K₇ and Oriented Matroids

Main Results and Examples

5 Points in \mathbb{R}^3 , Signed Circuits

- $C = \{1, 2, 3, -4, -5\}$ and $-C = \{-1, -2, -3, 4, 5\}$ where $C^+ = \{1, 2, 3\}, C^- = \{4, 5\}$
- $C = \{1, 2, 3, 4, -5\}$ and $-C = \{-1, -2, -3, -4, 5\}$ where $C^+ = \{1, 2, 3, 4\}, C^- = \{5\}$
- (Radon's Theorem) Any set of *d* + 2 points in ℝ^d can be partitioned into two disjoint sets whose convex hulls intersect.

Definitions

Related Theorems

Linear K_7 and Oriented Matroids $0 \bullet 0000$

Main Results and Examples

7 Vertices of a Linear K_7 in \mathbb{R}^3

- 1 = [9.239689, 0.635179, 3.144147], 2 = [2.429298, 7.173933, 3.78047],
- 3 = [2.028693, 7.780807, 0.9256], 4 = [6.725992, 1.339026, 8.642522],
- 5 = [0.8746, 1.629319, 5.610789], 6 = [8.836616, 8.955078, 4.544055],
- 7 = [7.11866, 3.255548, 6.418356]

Definitions

Related Theorems

Linear K_7 and Oriented Matroids 000000

Main Results and Examples

Oriented Matroid of a Linear K_7

 $\mathcal{C} = \{\{1, 2, -3, -4, 5\}, \{1, 2, -3, -4, -6\}, \{1, 2, -3, -4, -7\}, \{1, 2, -3, -5, -6\}, \\ \{1, 2, -3, -5, -7\}, \{1, 2, -3, 6, -7\}, \{1, 2, 4, -5, -6\}, \{1, 2, 4, -5, -7\}, \\ \{1, 2, 4, 6, -7\}, \{1, 2, -5, -6, 7\}, \{1, -3, -4, 5, 6\}, \{1, 3, 4, -5, -7\}, \\ \{1, 3, 4, 6, -7\}, \{1, -3, 5, 6, -7\}, \{1, 4, 5, 6, -7\}, \{2, 3, 4, -5, -6\}, \\ \{2, -3, -4, 5, 7\}, \{2, -3, -4, -6, 7\}, \{2, 3, -5, -6, 7\}, \{2, -4, -5, -6, 7\}, \\ \{3, 4, -5, -6, -7\}\}$

Definitions 0000	Related Theorems	Linear K_7 and Oriented Matroids	Main Results and Examples

Oriented Matroids

- An oriented matroid M on a finite set E is defined by its collection C of signed curcuits satisfying the following three properties;
 - (a) For all $C \in C$, $C \neq \emptyset$
 - (b) For all $C_1, C_2 \in \mathcal{C}, C_2 \subseteq C_1$ implies $C_2 = C_1$ or $C_2 = -C_1$
 - (c) (Elimination property) For all $C_1, C_2 \in C$ with $C_1 \neq -C_2$ and all $x \in (C_1^+ \cap C_2^-)$, there exists $C_3 \in C$ such that $C_3^+ \subseteq (C_1^+ \cup C_2^+) \setminus \{x\}$ and $C_3^- \subseteq (C_1^- \cup C_2^-) \setminus \{x\}$.
- An oriented matroid \mathcal{M} is *acyclic* if it has no circuit C with $C^- = \emptyset$.
- Matroids obtained from a linear K_7 in \mathbb{R}^3 are called *uniform affine acyclic oriented matroids* of rank 4(=3+1).

Main Results and Examples

(日) (日) (日) (日) (日) (日) (日)

Knots and Links from Oriented Matroids (1)

Theorem (Jeon-Jin)

Uniform affine acyclic oriented matroids of rank 4 on 7 vertices determine the number of knots and links of all linear K_7 .

(Idea of Proof) Let *f* be a linear embedding of K_7 and $\mathcal{M}(f)$ be the oriented matroid of *f*. Then we will see that the number of links in *f* is determined by $\mathcal{M}(f)$. Note that the number of 6-trefoils in *f* is determined by the number of (3,3)-Hopf links. Hence number of 6-trefoils in *f* is determined by $\mathcal{M}(f)$. By Nikkuni(2008), the following holds.

$$7\sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f(\gamma))-6\sum_{\gamma\in\Gamma_{6}(K_{7})}a_{2}(f(\gamma))=2\sum_{\gamma\in\Gamma_{4,3}(K_{7})}\ln(f(\gamma))^{2}-21$$

Main Results and Examples

Knots and Links from Oriented Matroids (2)

Hence $\sum_{\gamma \in \Gamma_7(K_7)} a_2(f(\gamma))$ is determined by $\mathcal{M}(f)$. Note that $a_2(f(trefoil)) = 1$ and $a_2(f(figure - 8)) = -1$. By Huh(2009), we can see that the number of figure-8 knots in f is determined by $\mathcal{M}(f)$. Therefore the number of 7-trefoils is also determined by $\mathcal{M}(f)$.

Corollary

Two linear embeddings of K_7 which realize a given uniform affine acyclic oriented matroid of rank 4 have the same number of knots and the same number of links.

(Proof) A liner embedding of K_7 determines its uniform affine acyclic oriented matroids. Note that uniform affine acyclic oriented matroids of rank 4 on 7 vertices are realizable.

Definitions

Algorithm to Count Knots and Links in Linear K_7

- List 462 uniform affine acyclic oriented matroids of rank 4 on 7 vertices,
- 2 Realize each oriented matroid by choosing 7 points in \mathbb{R}^3 ,
- For links, we have two methods;
 - (a) Check all (3,3)-cycles and (3,4)-cycles in each realized linear *K*₇.
 - (b) (Without Realization) Check four signed circuits conditions for non-trivial links in each matroid.
- For knots, we have two methods;
 - (a) Check all 6-cycles and 7-cycles in each realized linear K_7 .
 - (b) (Without Realizaion) Check three signed circuits conditions for figure-8 knots in each matroid.

Definitions

Linear K₇ and Oriented Matroids

Main Results and Examples

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Counting Links in Linear K_7 from Oriented Matroids (1)

- M contains a (3,3)-Hopf link ⇔ (a, b, c, -x, -y) ∈ M, (a, b, c, -y, -z) ∉ M and (a, b, c, -z, -x) ∉ M
 M contains a (3,4)-Hopf link ⇔ (a) or (b)
 (a) (a, b, c, -x, -y) ∈ M, (a, b, c, -y, -z) ∉ M, (a, b, c, -z, -w) ∉ M and (a, b, c, -w, -x) ∉ M
 - (b) $(a, b, c, -x, -y) \in \mathcal{M}, (a, b, c, -y, -z) \in \mathcal{M}, (a, b, c, -z, -w) \in \mathcal{M}$ and $(a, b, c, -w, -x) \notin \mathcal{M}$

Definitions

Linear K₇ and Oriented Matroids

Main Results and Examples

(日) (日) (日) (日) (日) (日) (日)

Counting Links in Linear K_7 from Oriented Matroids (2)

• \mathcal{M} contains a {2,4}-Torus link \Leftrightarrow (a) and (b)

De	efir	iiti	0	
00	00			

Linear K₇ and Oriented Matroids

Main Results and Examples

Result for Links in Linear K_7

Nur	K- Matroide			
(3,3)Hopf	(3,3)Hopf (3,4)Hopf {2,4}-Torus Sum		N7 Matrolus	
7	14	0	21	305
9	18	0	27	97
11	22	0	33	20
10	22	1	36	11
15	26	0	39	18
15	26	1	42	7
15	30	0	45	3
17	30	1	48	1
	462			

REMARK. The number of 3-4 Hopf links is not twice the number of 3-3 Hopf links if and only if the number of $\{2, 4\}$ -torus link is one.

Linear K_7 and Oriented Matroids

Main Results and Examples

Result for Knots in Linear K_7

Numbe	K- Matroide				
6-Trefoil	7-Trefoil	Fig-8	Sum	N7 Wallous	
0	1	0	1	305	
1	3	0	4	97	
2	5	0	7	20	
3	7	0	10	18	
	8	1	12	11	
	9	0	13	7	
4	11	2	17	1	
	12	3	19	2	
5	11	0	16	1	
	462				

REMARK. No linear K_7 can contain more than five 6-trefoils.

De	fin	itic	ons
oc	00	С	

Linear K₇ and Oriented Matroids

Main Results and Examples

Result for Knots and Links in Linear K_7

Number of Knots and Links in Linear K_7					
6-Trefoil	7-Trefoil	Fig-8	(3,3)Hopf	(3,4)Hopf	{2,4}-Torus
0	1	0	7	14	0
1	3	0	9	18	0
2	5	0	11	22	0
3	7	0	13	22	1
				26	0
	8	1		20	0
	9 0		26	1	
4	11	2	15	30	0
	12	3		00	0
5	11	0	17	30	1

REMARK. There are at least ten isotopy classes of embeddings of K_7 . If a linear K_7 contains a {2,4}-torus link then it contains no figure-8 knots.

Definitions	

Linear K_7 and Oriented Matroids

Main Results and Examples

Examples (1)

Number of Knots and Links in linear K_7 (Matroid-237)					
6-Trefoil	7-Trefoil	Fig-8	(3,3)Hopf	(3,4)Hopf	{2,4}-Torus
4	12	3	15	30	0

REMARK. In a linear K_7 , there exist at most twelve 7-trefoils and at most three figure-8 knots. In tins example, (1, 2, 7, 5, 6, 3, 4), (1, 2, 7, 3, 4, 6, 5) and (1, 2, 4, 3, 7, 5, 6) are figure-8 knots.

De	finitio	ons
oc	000	

Linear K_7 and Oriented Matroids

Main Results and Examples

Examples (2)

Number of Knots and Links in linear K_7 (Matroid-450)					
6-Trefoil	7-Trefoil	Fig-8	(3,3)Hopf	(3,4)Hopf	{2,4}-Torus
5	11	0	17	30	1

REMARK. In a linear K_7 , there exist at most five 6-trefoils and at most one $\{2, 4\}$ -torus link.

Definitions	Related Theorems	Linear <i>K</i> ₇ and Oriented Matroids	Main Results and Examples ○○○○○○○●○
Summa	ary		

- We investigated the number of knots and links in all linear embeddings of K_7 .
- 2 We could see all previous results about the number of knots and links in linear K_7 .
- Further Study
 - By topological arguments, one can prove some new results obtained by this work.
 - 2 We are going to investigate knots and links in linear embeddings of K_8
 - (Special Thanks) We are grateful to Prof. Youngsik Huh for his valuable comments.

Definitions

Related Theorems

Linear K₇ and Oriented Matroids

Main Results and Examples

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

"Thank You!"