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Knots and Links

A m-component link is a union of m disjoint circles
embedded in R3.
A knot is a 1-component link.
Two links L and L′ are ambient isotopic, L ∼ L′, if there
exists a self-homeomorphism Φ on R3 such that Φ(L) = L′.
The link type of L is the ambient isotopy class of L.
L is trivial if L ∼ disjoint circles embedded in a plane of R3.
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Polygonal Links (1)

A polygonal link is a link consisting of finitely many straight
line segments(edges) whose endpoints are called vertices.
Trefoil knot, Figure-8 knot
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Polygonal Links (2)

Hopf link, {2,4}-Torus link

For a link type L, polygon index p(L) is the minimal
number of the line segments required to realize L as a
polygon or a union of polygons.
p(Trefoil) = 6, p(Figure-8) = 7, p(Hopf link) = 6,
p({2,4}-Tours link) = 7 and p(L) ≥ 8 for any other
non-trivial link type L.
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Complete Graphs and Linear Embeddings

Kn is the complete graph with n vertices.
A linear (embedding of) Kn is an embedding of Kn into R3

such that each edge of Kn is mapped onto a line segment.
A subgraph of Kn which is homeomorphic to the circle is
called a cycle of Kn.
A cycle of Kn is a k -cycle if it contains exactly k edges. An
n-cycle of Kn is called a Hamiltonian cycle.
(k , l)-cycle is a disjoint pair of a k -cycle and an l-cycle of
Kn.
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Knots and Links in Kn

.
Theorem (Conway-Gordon (1983))
..

.

. ..

.

.

Any embedding of K6 contains at least one non-trivial link
as one of its (3,3)-cycle.
Any embedding of K7 contains at least one non-trivial knot
as one of its Hamiltonian cycle.

.
Theorem (Negami (1991))
..

.

. ..

.

.

For any knot type K, there exists a natural number N(K) such
that every linear embedding of KN(K) contains a polygonal knot
of the type K.
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Links in Linear K7

.
Theorem (Hughes (2006))
..
.
. ..

.

.A linear K6 contains at most three Hopf links.

.
Theorem (Fleming-Mellor (2009))
..
.
. ..

.

.Any linear K7 contains at least twenty-one non-trivial links.

.
Theorem (Ludwig-Arbisi (2009))
..

.

. ..

.

.

The minimum number of non-trivial links in any linear K7 which
forms a convex polyhedron of seven vertices is twenty-one and
the maximum number of non-trivial links in K7 is forty-eight.
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Knots in Linear K7

.
Theorem (Brown (1977), Alfonsín (1999), Nikkuni (2008))
..
.
. ..

.

.Any linear K7 contains at least one trefoil knot. N(trefoil) = 7.

.
Theorem (Foisy-Ludwig (2009))
..

.

. ..

.

.

A linear embedding of K7 which forms a convex polyhedron of
seven vertices may have at most fourteen non-trivial knots.

.
Theorem (Huh (2009))
..
.
. ..

.

.A linear K7 contains at most three figure-8 knots.
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Knots and Links in Linear K7 (1)

.
Theorem (Huh-Jeon (2007), Nikkuni (2008))
..

.

. ..

.

.

A linear K6 contains at most one trefoil and at most three Hopf
links.

A linear K6 contains a trefoil if and only if it contains exactly
three Hopf links.
A linear K6 does not contain a trefoil if and only if it
contains exactly one Hopf link.

Number of Knots and Links in Linear K6
Hopf Trefoil

1 0
3 1
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Knots and Links in Linear K7 (2)

.
Corollary (Nikkuni (2008))
..

.

. ..

.

.

A linear K7 contains n trefoils as its 6-cycles if and only if it
contains 2n + 7 Hopf links as its (3,3)-cycles.

.
Theorem (Nikkuni (2008))
..

.

. ..

.

.

For any linear embedding f of K7,
∑

γ∈Γ7(K7)
a2(f (γ)) = 1 if and

only if non-trivial 2-component links in f (K7) are exactly
twenty-one Hopf links.

.
Corollary
..

.

. ..

.

.

A linear K7 contains one more trefoils than figure-8 knots
among its 7-cycles if and only if it contains exactly twenty-one
Hopf links.
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5 Points in R3, Signed Circuits

C = {1,2,3,−4,−5} and −C = {−1,−2,−3,4,5} where
C+ = {1,2,3}, C− = {4,5}
C = {1,2,3,4,−5} and −C = {−1,−2,−3,−4,5} where
C+ = {1,2,3,4}, C− = {5}
(Radon’s Theorem) Any set of d + 2 points in Rd can be
partitioned into two disjoint sets whose convex hulls
intersect.
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7 Vertices of a Linear K7 in R3

1 = [9.239689, 0.635179, 3.144147], 2 = [2.429298, 7.173933, 3.78047],
3 = [2.028693, 7.780807, 0.9256], 4 = [6.725992, 1.339026, 8.642522],
5 = [0.8746, 1.629319, 5.610789], 6 = [8.836616, 8.955078, 4.544055],
7 = [7.11866, 3.255548, 6.418356]
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Oriented Matroid of a Linear K7

C = {{1, 2,−3,−4, 5}, {1, 2,−3,−4,−6}, {1, 2,−3,−4,−7}, {1, 2,−3,−5,−6},
{1, 2,−3,−5,−7}, {1, 2,−3, 6,−7}, {1, 2, 4,−5,−6}, {1, 2, 4,−5,−7},
{1, 2, 4, 6,−7}, {1, 2,−5,−6, 7}, {1,−3,−4, 5, 6}, {1, 3, 4,−5,−7},
{1, 3, 4, 6,−7}, {1,−3, 5, 6,−7}, {1, 4, 5, 6,−7}, {2, 3, 4,−5,−6},
{2,−3,−4, 5, 7}, {2,−3,−4,−6, 7}, {2, 3,−5,−6, 7}, {2,−4,−5,−6, 7},
{3, 4,−5,−6,−7}}
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Oriented Matroids

An oriented matroid M on a finite set E is defined by its
collection C of signed curcuits satisfying the following three
properties;

(a) For all C ∈ C, C ̸= ∅
(b) For all C1,C2 ∈ C, C2 ⊆ C1 implies C2 = C1 or C2 = −C1
(c) (Elimination property) For all C1,C2 ∈ C with C1 ̸= −C2 and

all x ∈ (C+
1 ∩ C−

2 ), there exists C3 ∈ C such that
C+

3 ⊆
(
C+

1 ∪ C+
2

)
\ {x} and C−

3 ⊆
(
C−

1 ∪ C−
2

)
\ {x}.

An oriented matroid M is acyclic if it has no circuit C with
C− = ∅.
Matroids obtained from a linear K7 in R3 are called uniform
affine acyclic oriented matroids of rank 4(= 3 + 1).
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Knots and Links from Oriented Matroids (1)

.
Theorem (Jeon-Jin)
..

.

. ..

.

.

Uniform affine acyclic oriented matroids of rank 4 on 7 vertices
determine the number of knots and links of all linear K7.

(Idea of Proof) Let f be a linear embedding of K7 and M(f ) be
the oriented matroid of f . Then we will see that the number of
links in f is determined by M(f ). Note that the number of
6-trefoils in f is determined by the number of (3,3)-Hopf links.
Hence number of 6-trefoils in f is determined by M(f ).
By Nikkuni(2008), the following holds.

7
∑

γ∈Γ7(K7)

a2(f (γ))−6
∑

γ∈Γ6(K7)

a2(f (γ)) = 2
∑

γ∈Γ4,3(K7)

lk(f (γ))2−21
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Knots and Links from Oriented Matroids (2)

Hence
∑

γ∈Γ7(K7)
a2(f (γ)) is determined by M(f ). Note that

a2(f (trefoil)) = 1 and a2(f (figure − 8)) = −1.
By Huh(2009), we can see that the number of figure-8 knots in
f is determined by M(f ). Therefore the number of 7-trefoils is
also determined by M(f ).
.
Corollary
..

.

. ..

.

.

Two linear embeddings of K7 which realize a given uniform
affine acyclic oriented matroid of rank 4 have the same number
of knots and the same number of links.

(Proof) A liner embedding of K7 determines its uniform affine
acyclic oriented matroids. Note that uniform affine acyclic
oriented matroids of rank 4 on 7 vertices are realizable.
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Algorithm to Count Knots and Links in Linear K7

...1 List 462 uniform affine acyclic oriented matroids of rank 4
on 7 vertices,

...2 Realize each oriented matroid by choosing 7 points in R3,

...3 For links, we have two methods;
(a) Check all (3, 3)-cycles and (3, 4)-cycles in each realized

linear K7.
(b) (Without Realizaion) Check four signed circuits conditions

for non-trivial links in each matroid.
...4 For knots, we have two methods;

(a) Check all 6-cycles and 7-cycles in each realized linear K7.
(b) (Without Realizaion) Check three signed circuits conditions

for figure-8 knots in each matroid.
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Counting Links in Linear K7 from Oriented Matroids (1)

M contains a (3,3)-Hopf link ⇔ (a,b, c,−x ,−y) ∈ M,
(a,b, c,−y ,−z) /∈ M and (a,b, c,−z,−x) /∈ M
M contains a (3,4)-Hopf link ⇔ (a) or (b)
(a) (a,b, c,−x ,−y) ∈ M, (a, b, c,−y ,−z) /∈ M,

(a,b, c,−z,−w) /∈ M and (a, b, c,−w ,−x) /∈ M
(b) (a,b, c,−x ,−y) ∈ M, (a, b, c,−y ,−z) ∈ M,

(a,b, c,−z,−w) ∈ M and (a, b, c,−w ,−x) /∈ M
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Counting Links in Linear K7 from Oriented Matroids (2)

M contains a {2,4}-Torus link ⇔ (a) and (b)
(a) (a,b, c,−x ,−y) ∈ M, (a, b, c,−y ,−z) /∈ M,

(a,b, c,−z,−w) ∈ M and (a, b, c,−w ,−x) /∈ M
(b) (x , y , z,−a,−b) ∈ M and (y , z,w ,−a,−b) ∈ M or

(x , y , z,−b,−c) ∈ M and (y , z,w ,−b,−c) ∈ M or
(x , y , z,−c,−a) ∈ M and (y , z,w ,−c,−a) ∈ M
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Result for Links in Linear K7

Number of Links in Linear K7 K7 Matroids
(3,3)Hopf (3,4)Hopf {2,4}-Torus Sum

7 14 0 21 305
9 18 0 27 97

11 22 0 33 20

13
22 1 36 11
26 0 39 18

15
26 1 42 7
30 0 45 3

17 30 1 48 1
Total 462

REMARK. The number of 3-4 Hopf links is not twice the number of 3-3 Hopf
links if and only if the number of {2, 4}-torus link is one.
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Result for Knots in Linear K7

Number of Knots in Linear K7 K7 Matroids
6-Trefoil 7-Trefoil Fig-8 Sum

0 1 0 1 305
1 3 0 4 97
2 5 0 7 20

3
7 0 10 18
8 1 12 11

4
9 0 13 7
11 2 17 1
12 3 19 2

5 11 0 16 1
Total 462

REMARK. No linear K7 can contain more than five 6-trefoils.
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Result for Knots and Links in Linear K7

Number of Knots and Links in Linear K7
6-Trefoil 7-Trefoil Fig-8 (3,3)Hopf (3,4)Hopf {2, 4}-Torus

0 1 0 7 14 0
1 3 0 9 18 0
2 5 0 11 22 0

3 7 0 13
22 1

26 08 1

4
9 0

15
26 1

11 2 30 012 3
5 11 0 17 30 1

REMARK. There are at least ten isotopy classes of embeddings of
K7. If a linear K7 contains a {2, 4}-torus link then it contains no
figure-8 knots.
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Examples (1)

Number of Knots and Links in linear K7(Matroid-237)
6-Trefoil 7-Trefoil Fig-8 (3,3)Hopf (3,4)Hopf {2,4}-Torus

4 12 3 15 30 0

REMARK. In a linear K7, there exist at most twelve 7-trefoils and at most
three figure-8 knots. In tins example, (1, 2, 7, 5, 6, 3, 4), (1, 2, 7, 3, 4, 6, 5)
and (1, 2, 4, 3, 7, 5, 6) are figure-8 knots.
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Examples (2)

Number of Knots and Links in linear K7(Matroid-450)
6-Trefoil 7-Trefoil Fig-8 (3,3)Hopf (3,4)Hopf {2,4}-Torus

5 11 0 17 30 1

REMARK. In a linear K7, there exist at most five 6-trefoils and at most one
{2, 4}-torus link.
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Summary

...1 We investigated the number of knots and links in all linear
embeddings of K7.

...2 We could see all previous results about the number of
knots and links in linear K7.

...3 Further Study
...1 By topological arguments, one can prove some new results

obtained by this work.
...2 We are going to investigate knots and links in linear

embeddings of K8

(Special Thanks) We are grateful to Prof. Youngsik Huh for
his valuable comments.
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“Thank You!”
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