Bridge position and the representativity of spatial graphs

Makoto Ozawa Komazawa University

August 19, 2010

Topological graph theory

$G \subset F$

Topological spatial graph theory

$$\Gamma \subset F \subset S^3$$

 $\S1$ Putting (F, Γ) in an essential Morse position

 $\S 2$ Constructing spatial graphs with arbitrarily high representativity

 $\S3$ High representativity implies high complexity

 $\S4$ Strong spatial embedding conjecture

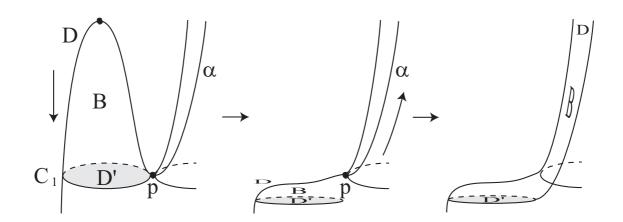
 $\S1$ Putting F in an essential Morse position

Let Γ be in a bridge position with respect to the height function $h: S^3 \to \mathbb{R}$.

Let F be a closed surface containing Γ .

Then there exists an isotopy of (F, Γ) in S^3 such that it keeps the bridge position of Γ and F has no inessential saddle point (i.e. essential Morse position).

 (F, Γ) can be put in an essential Morse position.



In case that *F* is a 2-sphere

By Lemma 1, F has no saddle point, and hence only one maximal/minimal point.

Thus F intersects a bridge sphere S in a single loop.

Theorem 1 Let Γ be put in a bridge position. Then Γ is trivial if and only if there exists a 2sphere F containing Γ such that F intersects the bridge sphere S in a single loop.

It is worth to notice that an isotopy of unknotting Γ can be decomposed into two isotopies by any bridge sphere S.

Theorem 1 extends Otal's result that any nonminimal bridge position of the trivial knot is stabilized.

In case that F has a positive genus

By Lemma 1, F has only essential saddle points.

Then there exists a bridge level sphere S such that $S \cap F$ contains at least two essential loops.

Since there are at least two essential innermost loops l_1 and l_2 of $S \cap F$ in S, which bound compressing disks D_1 and D_2 for F in S,

$$|\partial D_1 \cap \Gamma| + |\partial D_2 \cap \Gamma| \le |\Gamma \cap S|$$

We define the *representativity* of (F, Γ) as

$$r(F, \Gamma) = \min_{D \in \mathcal{D}_F} |\partial D \cap \Gamma|$$

where \mathcal{D}_F is the set of all compressing disks for F in S^3 .

Definition 2 We define the *representativity* of Γ as

$$r(\Gamma) = \max_{F \in \mathcal{F}} r(F, \Gamma)$$

where \mathcal{F} is the set of all closed surfaces of positive genus containing Γ .

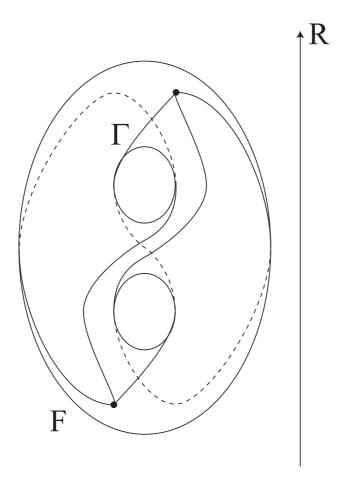
$$\begin{array}{c} \hline & \textbf{Definition 3} \\ \hline & \text{We define the bridge string number of } \Gamma \text{ as} \\ \\ & bs(\Gamma) = \min_{\Gamma \in \mathcal{BP}_{\Gamma}} |\Gamma \cap S| \\ \hline & \text{where } \mathcal{BP}_{\Gamma} \text{ is the set of all bridge position of} \end{array}$$

Remark. $r(\Gamma) \ge 1$ and $bs(\Gamma) \ge \beta_1(G) + 1$ for any spatial graph Γ

Γ.

Theorem 2	
$r(\Gamma) \leq \frac{bs(\Gamma)}{2}$	

Example 1.

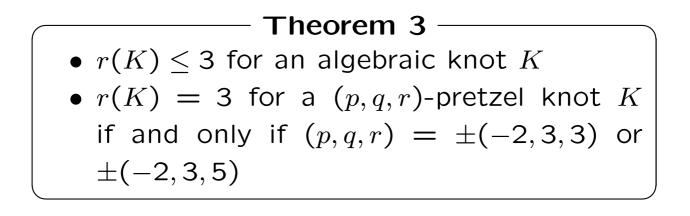


$$2 = r(F, \Gamma) \le r(\Gamma) \le \frac{bs(\Gamma)}{2} \le \frac{5}{2}$$

Hence $r(\Gamma) = 2$.

Example 2.

- $2 \le r(K) \le b(K)$ for any non-trivial knot K
- $r(K) = \min\{p,q\}$ for a (p,q)-torus knot K
- r(K) = 2 for a 2-bridge knot K



$$r(K) = 2$$
 for an alternating knot K

$\S2$ Constructing spatial graphs with arbitrarily high representativity

Lemma 2

For a Heegaard surface of positive genus Fin S^3 and for any integer $n \ge 2$, there exists a knot K non-separatingly contained in F such that r(F, K) = n.

Lemma 3 (Fox's reimbedding theorem) A connected compact 3-dimensional submanifold of S^3 can be reimbedded in S^3 so that it is the complement of a union of handlebodies in S^3 .

An irreducible compact 3-manifold with boundary has a unique characteristic compression body.

For any closed surface F with $g(F) \ge g(G)$ and for any integer n, there exists a spatial graph Γ of G contained in F such that $r(F, \Gamma) \ge n$.

Put $S^3 = M_1 \cup_F M_2$.

First by Lemma 4, we take a characteristic compression body V_i for F in M_i .

Next by Lemma 3, we reimbed $V_1 \cup_F V_2$ in S^3 so that it is the complement of a union of handlebodies in S^3 .

Then F becomes a Heegaard surface in S^3 and by Lemma 2, it contains a knot K such that r(F, K) = n.

Finally we embed G in the Heegaard surface F so that it contains K, and restore the Fox's reimbedding.

Satellite construction

$$S^{3} = M_{1} \cup_{F} M_{2} \supset V_{1} \cup_{F} V_{2} \supset F \supset \Gamma \supset K$$

$$\downarrow \text{Fox}$$

$$S^{3} = M'_{1} \cup_{F'} M'_{2} \supset V_{1} \cup_{F'} V_{2} \supset F' \supset \Gamma' \supset K'$$

Key ingredients:

- F' is a Heegaard surface of S^3 .
- $r(F', \exists K') = n$ in S^3 by Lemma 2

•
$$F' \supset \exists \Gamma' \supset K'$$

- $r(F, K) = r(F', K') \ge n \text{ in } V_1 \cup_F V_2 = V_1 \cup_{F'} V_2$
- $r(F,K) \ge n$ in S^3
- $r(F, \Gamma) \ge r(F, K) \ge n$

$\S{3}$ High representativity implies high complexity

Theorem 5 If $r(\Gamma) > \beta_1(G)$, then Γ contains a connected totally knotted spatial subgraph.

 Γ is *totally knotted* if $\partial N(\Gamma)$ is incompressible in $S^3 - \Gamma$.

Remark. Totally knotted spatial graphs are non-free.

If $r(\Gamma) = n$, then Γ is spatially *n*-connected.

 Γ is *spatially n*-connected if it has no essential tangle decomposing sphere *S* with $|\Gamma \cap S| < n$.

Proof of Theorem 5.

If Γ is primitive, then $bs(\Gamma) \leq 2\beta_1(G)$.

Proof: Let T be a spanning tree of Γ . Then $\partial N(T)$ is a bridge sphere for Γ such that $|\partial N(T) \cap \Gamma| = 2\beta_1(G)$. Hence $bs(\Gamma) \leq 2\beta_1(G)$.

Lemma 6 If Γ is not primitive, then Γ contains a connected totally knotted spatial subgraph.

Proof: Let T be a spanning tree of Γ such that Γ/T is a non-trivial bouquet. Then Γ/T contains a minimally knotted (hence

totally knotted) subgraph Γ_0/T_0 .

Hence Γ contains a connected totally knotted spatial subgraph $\Gamma_0.$

Proof of Theorem 6.

Let F be a closed surface containing Γ such that $r(F, \Gamma) = n$.

Suppose that there exists an essential tangle decomposing sphere S for Γ with $|\Gamma \cap S| < n$.

We may assume that F intersects S in loops, and assume that $|F \cap S|$ is minimal.

Then the innermost disk D in S bounded by an innermost loop of $F \cap S$ is a compressing disk for F since S is an essential tangle decomposing sphere.

It follows that $r(F, \Gamma) \leq |\partial D \cap \Gamma| \leq |\Gamma \cap S| < n$.

$\S4$ Strong spatial embedding conjecture

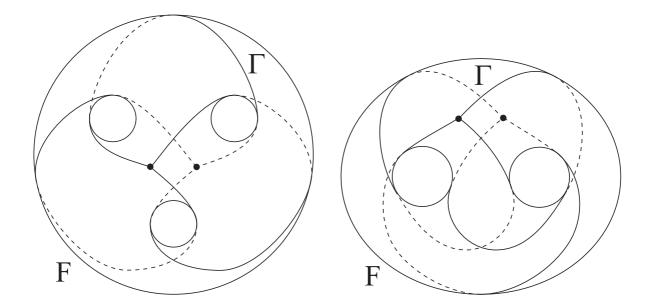
– Definition 4 -

The (maximal) representativity of a nonplanar graph G is defined as

$$r(G) = \max_{F \in \mathcal{F}} \min_{C \in \mathcal{C}_F} |C \cap G|,$$

where \mathcal{F} is the set of all closed surfaces containing G and \mathcal{C}_F is the set of all essential loops in F.

- Strong spatial embedding conjecture – For a non-trivial spatial graph Γ of a 2connected graph G, $r(\Gamma) \ge 2$. Example 3.



Kinoshita's theta curve on two closed surfaces

We have $r(\Gamma) = 2$ like Example 1.

Theorem 7 If θ_n -curve Γ_i (i = 1, 2) satisfies the strong spatial embedding conjecture, then some connected sum $\Gamma_1 \# \Gamma_2$ also satisfies the strong spatial embedding conjecture.