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Kuratowski’s Theorem

A graph G can be embedded in the plane if and only if G does
not contain K5 nor K3,3 as a minor.

Quick sketch of Thomassen’s proof of Kuratowski’s Theorem:
The difficult direction is “If G does not contain K5 nor K3,3
as a minor, then G embeds in the plane."
Prove for 3-connected graphs, by induction. Induction
hypothesis: “If H is 3-connected, with n vertices, and G
does not contain K5 nor K3,3 as a minor, then G can be
embedded in the plane."
Consider a graph G, with n + 1 vertices, such that G does
not contain K5 nor K3,3 as a minor.
Key Lemma (Thomassen): There exists an edge e = (x , y)
of G such that G/e is 3-connected. As G/e has n vertices,
by the induction hypothesis, it can be embedded in the
plane. Moreover, as G − x ′ is 2−connected, the graph of
G/e near x ′ looks like a cycle C with spokes emanating
from x ′.
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Then expand the vertex x ′ back into (x , y), the result is a
planar embedding of G′, unless K5 or K3,3 is a minor.
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Observation: if there is an S0 = {v ,w} on the cycle C
such that C − {v ,w} is two components C1,C2, and every
neighbor of x is contained in C1 ∪ {v ,w} and every
neighbor of y is contained in C2 ∪ {v ,w}, then G will be
planar.

Once the 3−connected case has been established, it’s
easy to establish result for lower connectivity graphs.
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Sachs’ Linkless Embedding Conjecture

We call a graph G flat if there exists a spatial embedding of G,
φ(G), such that for every cycle C in G, there is a disk D ⊂ R3

such that D ∩ φ(G) = C.

Sachs’ Linkless Embedding Conjecture (Proved by Robertson,
Seymour and Thomas, 1990’s): A graph G has a flat
embedding if and only if G does not contain a Petersen Family
graph member as a minor.

Recall that the Petersen Family of graphs consists of K6 and
the six other graphs obtained from K6 by ∆− Y and Y −∆
exchanges.
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Outline of steps involved in generalizing Thomassen’s proof of
Kuratowski’s Theorem to a (possible??!!!!!) proof of Sachs’
linkless embedding conjecture:
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Assume by induction that every 3−connected graph on n or
fewer vertices that does not contain a Petersen Family graph as
a minor has a flat embedding.

Note: it’s well known that a minor-minimal non flat graph must
be 3−connected.
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Start with a 3−connected graph, G, that does not contain a
Petersen Family graph as a minor, and has n + 1 vertices.
Contract an edge e = (x , y), such that the resulting graph is
3−connected (such an edge exists by Thomassen’s lemma).

The resulting graph has no minor in the Petersen family, and
thus by the induction hypothesis has a flat embedding. Call the
vertex that results from the contracted edge v . Call G/e = H.
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Take a flat embedding of H, φ(H). Ambient isotope the
embedding so that all edges that are incident to v are straight
line segments of unit length, and the rest of H lies outside the
unit sphere centered at v , except that edges between
neighbors of v lie on the unit sphere.

v

By abuse of notation we call this new (but equivalent)
embedding φ(H).
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(Note: we can do this by Bohme’s lemma: the cycles containing
v in the subgraph induced by v and its neighbors form a
collection of cycles whose pair-wise intersection is always
connected.) Note that the subgraph induced by the neighbors
of v must be planar, as φ(H) is flat.
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Recall that a disk assignment Dφ for a flat spatial graph φ(G) is
a collection of disks, {Di |i ∈ I} such that there are I cycles of G,
and for each cycle Ci in G, Di panels Ci . That is,
Di ∩ φ(G) = Ci .

Given φ(H), we consider two disk assignments Dφ = {Di} and
Eφ = {Ei} to be equivalent if, for each i ∈ I, there is an ambient
isotopy of φ(H) ∪ Di with φ(H) ∪ Ei such that φ(H) is fixed.
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Create a new graph, the slice graph, S(φ(H),Dφ, v) (or more
simply, S), as follows:

Start by taking the intersection of disks that panel cycles
through v in φ(H), with the unit sphere. We require these
intersections to be nice (for example, transverse to the sphere.)

The resulting intersections form edges. We call these edges
slice edges. If a slice edge is parallel to an existing edge in H,
we discard the slice edge in the slice graph.
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Note that slice edges will not intersect edges of H, though they
may intersect each other. When they do intersect, we get new
vertices (slice vertices) in the slice graph. Given a disk
assignment, we pick representatives so that there are as few
intersections (slice vertices) as possible.

Thus in the graph S, there are no:

slice vertices of degree 3. (Such a Y could be replaced
with a ∆.)
adjacent slice vertices.

Conjecture: Under these conditions, S(φ(H),Dφ, v) is a
uniquely determined graph.
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To reiterate, S(φ(H),Dφ, v) is the graph consisting of the
induced subgraph formed by v and its neighbors, as well as the
slice edges and vertices.

We call the planar graph S(φ(H),Dφ, v)− v the neighbor graph
of v .

S comes with an embedding inherited from φ(H). We call the
embedding φ(S).
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vv

An example of a slice graph.
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v v

A second example of a slice graph.
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From (v,2,w,6)

Note that we ignore
the slice edge
determined by
(v,2,w,3)
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v

The maximally flat graph from Bohme and an associated
neighbor graph.
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An example of φ(H) with different disk assignments
leading to different S.

v

v
v
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Another example of φ(H) with different disk assignments
leading to different S.

v

v

If we restrict to a single disk assignment (up to equivalence at
v ), and minimize slice vertices, then we reiterate our
conjecture: S is unique.
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Now, similarly to Thomassen’s proof, we try to expand, in φ(H)
(and in S), the vertex v back to the edge (x , y), and see if we
get a flat embedding. We call the graph resulting from S by
expanding v into (x , y) an expanded slice graph, denoted S′.
We denote the embedding that results from expanding the
vertex in the (?) natural way, φ(S′).

(We hope!) The slice graph at a vertex is analogous to the
wheel with spokes in Thomassen’s proof. In some sense, the
slice graph only considers local information. It cuts out
information from the graph embedding that is irrelevant, as far
as flatness goes.
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Conjecture: G has a flat embedding if and only if there is a disk
assignment for φ(H) for which the associated φ(S′) is flat.

Proof sketch: (<–) Start with the flat φ(S′). Extend to an
embedding of G by adding the edges of φ(H) that lie outside
the unit sphere. What results is an embedding of G with some
slice edges (from S′) added on the unit sphere. Clearly, any
cycle that lies outside the open unit ball can be paneled.

Conjecture: The resulting embedding of G is flat.
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The (- ->) direction: Sketch of possible proof: if every disk
assignment (or perhas if just a “minimal bridge disk
assignment") leads to a non-flat φ(S′), then G must contain a
Petersen graph as a minor....
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So, assuming all conjectures up to this point are true, what can
we do to prove Sachs’ Linkless Embedding Conjecture?

Just worry about possible expanded slice graphs. This makes
things easier.
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The neighbors of v in S are exactly the non-slice vertices in the
neighbor graph. We assign each such vertex one of three
class.

Class x (red) if it connects in G to x but not to y .
Class y (blue) if it connects to y but not to x .
Class xy (red & blue) if it connects to both.

We call the graph S with this information on the vertices the
marked slice graph, m(S).
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Which m(S) do not lead to flat S′?

Thanks to RST, there are nine minor-minimal such graphs.
They were obtained by taking G/e with G in the Petersen
family, where e is an edge or non-edge of G. (All Y’s were
turned into triangles....) :
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Last big gap: come up with a direct argument that these 9
cases cover all minor-minimal m(S) that do not lead to a flat S′.
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Claim/Conjecture:

The graph S′ is flat if there exists a disk assignment for φ(S) for
which there is a separating circle for m(S).

FLAT!

=
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NOT FLAT!

=
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Let’s follow this reasoning for an edge contraction on K4,4 − e.
Contract an edge between a degree 3 vertex and a degree 4
vertex. Call the resulting graph H. Here is a flat embedding of
H:
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The associated S is:
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And the associated m(S) is:
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