A Sufficient Condition for Intrinsic Linking ¹

Ryan Ottman

University of California, Santa Barbara

August 19, 2010

Ryan Ottman (UCSB)

A Sufficient Condition for Intrinsic Linking

August 19, 2010 1 / 13

1 Preliminaries

(日) (同) (三) (三)

3

3

(日) (同) (三) (三)

A graph is intrinsically linked if every embedding of the graph is linked

A graph is intrinsically linked if every embedding of the graph is linked

A graph is intrinsically linked if every embedding of the graph is linked

A graph is intrinsically knotted if every embedding contains some non-trivial knot

A graph is intrinsically linked if every embedding of the graph is linked

A graph is intrinsically knotted if every embedding contains some non-trivial knot

A graph is minor minimal if it has a property but no minors do

A graph is intrinsically linked if every embedding of the graph is linked

A graph is intrinsically knotted if every embedding contains some non-trivial knot

A graph is minor minimal if it has a property but no minors do Intrinsic linking and knotting are measures of complexity

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges is intrinsically knotted

3

(日) (周) (三) (三)

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges is intrinsically knotted

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges is intrinsically linked

過 ト イヨ ト イヨト

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges is intrinsically knotted

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges is intrinsically linked

Conjectured by Sachs in 1984

• • = • • = •

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges is intrinsically knotted

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges is intrinsically linked

Conjectured by Sachs in 1984

Theorem

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges has K_7 as a minor

過 ト イヨ ト イヨト

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges is intrinsically knotted

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges is intrinsically linked

Conjectured by Sachs in 1984

Theorem

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges has K_7 as a minor

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

(日) (周) (三) (三)

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges is intrinsically knotted

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges is intrinsically linked

Conjectured by Sachs in 1984

Theorem

A graph on n vertices (where $n \ge 7$) with at least 5n - 14 edges has K_7 as a minor

Theorem

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

Both	shown	by	Mader	in	1968
------	-------	----	-------	----	------

Ryan Ottman (UCSB) A Sufficient

A Sufficient Condition for Intrinsic Linking

■ → **■** → **■** → **Q** ⊂ August 19, 2010 4 / 13

(日) (周) (三) (三)

A graph on n vertices (where $n\geq 6$) with at least 4n-9 edges has K_6 as a minor

3

A D A D A D A

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

n = 6: 4n - 9 = 4(6) - 9 = 15. So $G = K_6$

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

n = 6: 4n - 9 = 4(6) - 9 = 15. So $G = K_6$ Suppose G has n vertices and 4n - 9 edges.

• • = • • = •

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

$$n = 6: 4n - 9 = 4(6) - 9 = 15$$
. So $G = K_6$

Suppose G has n vertices and 4n - 9 edges.

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

$$n = 6: 4n - 9 = 4(6) - 9 = 15$$
. So $G = K_6$

Suppose G has n vertices and 4n - 9 edges.

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

$$n = 6: 4n - 9 = 4(6) - 9 = 15$$
. So $G = K_6$

Suppose G has n vertices and 4n - 9 edges.

A graph on n vertices (where $n \ge 6$) with at least 4n - 9 edges has K_6 as a minor

$$n = 6: 4n - 9 = 4(6) - 9 = 15$$
. So $G = K_6$

Suppose G has n vertices and 4n - 9 edges.

3

(日) (同) (三) (三)

Now focus on a vertex a of minimum degree, the possibilities are 5, 6, 7

A D A D A D A

Now focus on a vertex *a* of minimum degree, the possibilities are 5, 6, 7 If deg(a) = 5, consider the subgraph consisting of *a* and its neighbors.

< 回 ト < 三 ト < 三 ト

Now focus on a vertex *a* of minimum degree, the possibilities are 5, 6, 7 If deg(a) = 5, consider the subgraph consisting of *a* and its neighbors.

0

< 回 ト < 三 ト < 三 ト

Edge Theorems

Now suppose deg(a) = 6.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now suppose deg(a) = 6. Consider the induced subgraph of the vertices adjacent to *a*

イロト イポト イヨト イヨト

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

3

< ロト < 同ト < ヨト < ヨト

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

Each vertex here has at least degree 4, so there are at least 12 edges

Edge Theorems

Now suppose deg(a) = 6.

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

Each vertex here has at least degree 4, so there are at least 12 edges

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

Each vertex here has at least degree 4, so there are at least 12 edges

Assume there is no path in the rest of the graph connecting v_1 to v_2 , v_3 to v_4 , or v_5 to v_6

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

Each vertex here has at least degree 4, so there are at least 12 edges

Assume there is no path in the rest of the graph connecting v_1 to v_2 , v_3 to v_4 , or v_5 to v_6 There are n - 1 + 3(6) = n + 17 vertices

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

Each vertex here has at least degree 4, so there are at least 12 edges

Assume there is no path in the rest of the graph connecting v_1 to v_2 , v_3 to v_4 , or v_5 to v_6 There are n - 1 + 3(6) = n + 17 vertices There are 4n - 9 - 6 + 12 = 4(n + 17) - 71 edges

Consider the induced subgraph of the vertices adjacent to a

If there are at least 13 edges, a theorem by Bollobas tells us there is a ${\it K}_5$ minor

Each vertex here has at least degree 4, so there are at least 12 edges

Assume there is no path in the rest of the graph connecting v_1 to v_2 , v_3 to v_4 , or v_5 to v_6 There are n - 1 + 3(6) = n + 17 vertices There are 4n - 9 - 6 + 12 = 4(n + 17) - 71 edges one of the 8 subgraphs must have $4n_i - \lfloor \frac{71}{8} \rfloor = 4n_i - 8$ edges If deg(a) = 7 we are in a very similar situation to deg(a) = 6

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

If deg(a) = 7 we are in a very similar situation to deg(a) = 6

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

イロト 不得下 イヨト イヨト

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

 $K_{n_1+n_2,n_3,...,n_p}$ is a minor of $K_{n_1,n_2,...,n_p}$.

過 ト イヨ ト イヨト

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

 $K_{n_1+n_2,n_3,...,n_p}$ is a minor of $K_{n_1,n_2,...,n_p}$. $K_{n_1,n_2,...,n_p} - k$ has a minor of the form $K_{n_1+n_2,n_3,...,n_p} - k$.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & {\cal K}_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } {\cal K}_{n_1,n_2,...,n_p}. \\ & {\cal K}_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } {\cal K}_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	п,З	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & K_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } K_{n_1,n_2,...,n_p}. \\ & K_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } K_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	п,З	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

 $K_{n_1+n_2,n_3,...,n_p}$ is a minor of $K_{n_1,n_2,...,n_p}$. $K_{n_1,n_2,...,n_p} - k$ has a minor of the form $K_{n_1+n_2,n_3,...,n_p} - k$.

k	1	2	3	4	5	\geq 6
linked	6	4 , 4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	п,З	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & {\cal K}_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } {\cal K}_{n_1,n_2,...,n_p}. \\ & {\cal K}_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } {\cal K}_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3 , 3 , 1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3 ,2,1, 1	3 ,1,1,1, 1	
not linked	5	п,З	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & {\cal K}_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } {\cal K}_{n_1,n_2,...,n_p}. \\ & {\cal K}_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } {\cal K}_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	п,З	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & {\cal K}_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } {\cal K}_{n_1,n_2,...,n_p}. \\ & {\cal K}_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } {\cal K}_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	<i>n</i> ,3	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & {\cal K}_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } {\cal K}_{n_1,n_2,...,n_p}. \\ & {\cal K}_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } {\cal K}_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	п,З	3 ,2, 2	2,2,2,1	2,1,1,1,1	None
			n,2,1	n, 1, 1, 1		

Table: Intrinsic linking of complete k-partite graphs.

A k-deficient graph is a complete graph or a complete partite graph with k edges removed.

Lemma

$$\begin{split} & {\cal K}_{n_1+n_2,n_3,...,n_p} \text{ is a minor of } {\cal K}_{n_1,n_2,...,n_p}. \\ & {\cal K}_{n_1,n_2,...,n_p}-k \text{ has a minor of the form } {\cal K}_{n_1+n_2,n_3,...,n_p}-k. \end{split}$$

k	1	2	3	4	5	\geq 6
linked	6	4,4	3,3,1	2,2,2,2	2,2,1,1,1	All
			4,2,2	3,2,1,1	3,1,1,1,1	
not linked	5	п,З	3,2,2	2,2,2,1	2,1,1,1,1	None
			n,2,1	<i>n</i> ,1,1,1		

Table: Intrinsic linking of complete k-partite graphs.

Lemma (Sachs)

The graph $G + K_1$ is intrinsically linked if and only if G is non-planar

3. 3

A (10) F (10)

Lemma (Sachs)

The graph $G + K_1$ is intrinsically linked if and only if G is non-planar

Lemma (Blain et. al. and Ozawa et. al.)

The graph $G + K_2$ is intrinsically knotted if and only if G is non-planar

超す イヨト イヨト ニヨ

k	1	2	3	4	5	6	\geq 7
knotted	7	5,5	3,3,3	3,2,2,2	2,2,2,2,1	2,2,1,1,1,1	All
			4,3,2	4,2,2,1	3,2,2,1,1	3,1,1,1,1,1	
			4,4,1	3,3,2,1	3,2,1,1,1		
				3,3,1,1			
not knotted	6	4,4	3,3,2	2,2,2,2	2,2,2,1,1	2,1,1,1,1,1	None
			n,2,2	4,2,1,1	2,2,1,1,1		
			n,3,1	3,2,2,1	n, 1, 1, 1, 1		
				n,2,1,1			
				n, 1, 1, 1			

Table: Intrinsic knotting of k-partite graphs. (Blain et. al.)

3

イロト イポト イヨト イヨト

k	1	2	3	4	5	6	≥ 7
linked	7-е	4,4-е	4,3,1-е	2,2,2,2-е	2,2,1,1,1-(b,c)	2,1,1,1,1,1-e	All
			3,3,2-е	3,2,1,1-(b,c)	3,1,1,1,1-(b,c)		
			4,2,2-е	4,2,1,1-e	4,1,1,1,1-e		
				3,3,1,1-e	3,2,1,1,1-e		
				3,2,2,1-е	2,2,2,1,1-e		
not linked	6-е	<i>п</i> ,3-е	3,2,2-е	2,2,2,1-е	2,2,1,1,1-(a,b)	1,1,1,1,1,1-e	None
			<i>п</i> ,2,1-е	<i>n</i> ,1,1,1-e	2,2,1,1,1-(c,d)		
			3,3,1-е	3,2,1,1-(a,b)	3,1,1,1,1-(a,b)		
				3,2,1,1-(a,c)	2,1,1,1,1-e		
				3,2,1,1-(c,d)			

- 2

k	1	2	3	4	5	6	≥ 7
linked	7-е	4,4-е	4,3,1-е	2,2,2,2-е	2,2,1,1,1-(b,c)	2,1,1,1,1,1-e	All
			3,3,2-е	3,2,1,1-(b,c)	3,1,1,1,1-(b,c)		
			4,2,2-е	4,2,1,1-e	4,1,1,1,1-e		
				3,3,1,1-e	3,2,1,1,1-e		
				3,2,2,1-е	2,2,2,1,1-e		
not linked	6-е	<i>п</i> ,3-е	3,2,2-е	2,2,2,1-е	2,2,1,1,1-(a,b)	1,1,1,1,1,1-e	None
			<i>п</i> ,2,1-е	<i>n</i> ,1,1,1-e	2,2,1,1,1-(c,d)		
			3,3,1-е	3,2,1,1-(a,b)	3,1,1,1,1-(a,b)		
				3,2,1,1-(a,c)	2,1,1,1,1-e		
				3,2,1,1-(c,d)			

- 2

k	1	2	3	4	5	6	≥ 7
linked	7-е	4,4-е	4,3,1-е	2,2,2,2-е	2,2,1,1,1-(b,c)	2,1,1,1,1,1-e	All
			3,3,2-е	3,2,1,1-(b,c)	3,1,1,1,1-(b,c)		
			4,2,2-е	4,2,1,1-e	4,1,1,1,1-e		
				3,3,1,1-е	3,2,1,1,1-e		
				3,2,2,1-е	2,2,2,1,1-e		
not linked	6-е	<i>п</i> ,3-е	3,2,2-е	2,2,2,1-е	2,2,1,1,1-(a,b)	1,1,1,1,1,1-e	None
			<i>п</i> ,2,1-е	<i>n</i> ,1,1,1-e	2,2,1,1,1-(c,d)		
			3,3,1-е	3,2,1,1-(a,b)	3,1,1,1,1-(a,b)		
				3,2,1,1-(a,c)	2,1,1,1,1-e		
				3,2,1,1-(c,d)			

- 2

k	1	2	3	4	5	6	≥ 7
linked	7-е	4,4-е	4,3,1-е	2,2,2,2-е	2,2,1,1,1-(b,c)	2,1,1,1,1,1-e	All
			3,3,2-е	3,2,1,1-(b,c)	3,1,1,1,1-(b,c)		
			4,2,2-е	4,2,1,1-e	4,1,1,1,1-e		
				3,3,1,1-e	3,2,1,1,1-e		
				3,2,2,1-е	2,2,2,1,1-e		
not linked	6-е	<i>п</i> ,3-е	3,2,2-е	2,2,2,1-е	2,2,1,1,1-(a,b)	1,1,1,1,1,1-e	None
			<i>n</i> ,2,1-е	<i>n</i> ,1,1,1-e	2,2,1,1,1-(c,d)		
			3,3,1-е	3,2,1,1-(a,b)	3,1,1,1,1-(a,b)		
				3,2,1,1-(a,c)	2,1,1,1,1-e		
				3,2,1,1-(c,d)			

- 2

k	1	2	3	4	5	6	≥ 7
linked	7-е	4,4-е	4,3,1-е	2,2,2,2-е	2,2,1,1,1-(b,c)	2,1,1,1,1,1-e	All
			3,3,2-е	3,2,1,1-(b,c)	3,1,1,1,1-(b,c)		
			4,2,2-е	4,2,1,1-e	4,1,1,1,1-e		
				3,3,1,1-e	3,2,1,1,1-e		
				3,2,2,1-е	2,2,2,1,1-e		
not linked	6-е	<i>п</i> ,3-е	3,2,2-е	2,2,2,1-е	2,2,1,1,1-(a,b)	1,1,1,1,1,1-e	None
			<i>n</i> ,2,1-е	<i>n</i> ,1,1,1-e	2,2,1,1,1-(c,d)		
			3,3,1-е	3,2,1,1-(a,b)	3,1,1,1,1-(a,b)		
				3,2,1,1-(a,c)	2,1,1,1,1-e		
				3,2,1,1-(c,d)			

Table: Intrinsic Linking of 1 Deficient Graphs.

k	1	2	3	4	5	6	7	\geq 8
knotted	8-e	5,5-e	3,3,3-е	3,2,2,2-е	2,2,2,2,1-е	2,2,1,1,1,1-(b,c)	2,1,1,1,1,1,1e	All
			4,3,2-е	4,2,2,1-e	3,2,1,1,1-(b,c)	3,1,1,1,1,1-(b,c)		
			4,4,1-e	3,3,2,1-e	4,2,1,1,1-e	3,2,1,1,1,1-e		
				4,3,1,1-e	3,3,1,1,1-e	2,2,2,1,1,1-e		
					3,2,2,1,1-е	4,1,1,1,1,1-e		
not knotted	7-е	n,4-e	3,3,2-е	3,3,1,1-e	3,2,1,1,1-(c,d)	2,2,1,1,1,1-(a,b)	1,1,1,1,1,1,1e	None
			п,2,2-е	2,2,2,2-е	3,2,1,1,1-(a,b)	2,2,1,1,1,1-(c,d)		
			n,3,1-e	3,2,2,1-e	3,2,1,1,1-(a,c)	3,1,1,1,1,1-(a,b)		
				n,2,1,1-e	2,2,2,1,1-е	2,1,1,1,1,1-e		
					<i>n</i> ,1,1,1,1-е			

Table: Intrinsic knotting of 1 deficient graphs.

Ryan Ottman (UCSB)

A Sufficient Condition for Intrinsic Linking

Deficient graphs

Thank You

Ryan Ottman (UCSB)

A Sufficient Condition for Intrinsic Linking

August 19, 2010 13 / 13

2