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An embedding of a graph is linked if it contains a non-trivial link

A graph is intrinsically linked if every embedding of the graph is linked

A graph is intrinsically knotted if every embedding contains some
non-trivial knot
A graph is minor minimal if it has a property but no minors do
Intrinsic linking and knotting are measures of complexity
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Edge Theorems

Theorem

A graph on n vertices (where n ≥ 7) with at least 5n − 14 edges is
intrinsically knotted
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Theorem
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Conjectured by Sachs in 1984

Theorem

A graph on n vertices (where n ≥ 7) with at least 5n − 14 edges has K7 as
a minor

Theorem

A graph on n vertices (where n ≥ 6) with at least 4n − 9 edges has K6 as
a minor

Both shown by Mader in 1968
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Edge Theorems

Theorem

A graph on n vertices (where n ≥ 6) with at least 4n − 9 edges has K6 as
a minor

n = 6 : 4n − 9 = 4(6) − 9 = 15. So G = K6

Suppose G has n vertices and 4n − 9 edges.
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Edge Theorems

Now suppose deg(a) = 6.
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Edge Theorems

Now suppose deg(a) = 6.
Consider the induced subgraph of the vertices adjacent to a
If there are at least 13 edges, a theorem by Bollobas tells us there is a K5

minor
Each vertex here has at least degree 4, so there are at least 12 edges

Assume there is no path in the rest of the graph connecting v1 to v2, v3 to
v4, or v5 to v6

There are n − 1 + 3(6) = n + 17 vertices
There are 4n − 9 − 6 + 12 = 4(n + 17) − 71 edges
one of the 8 subgraphs must have 4ni − ⌊71

8 ⌋ = 4ni − 8 edges
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Edge Theorems

If deg(a) = 7 we are in a very similar situation to deg(a) = 6
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Kn1+n2,n3,...,np
is a minor of Kn1,n2,...,np

.
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k 1 2 3 4 5 ≥ 6

linked 6 4,4 3,3,1 2,2,2,2 2,2,1,1,1 All
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Deficient graphs

Lemma (Sachs)

The graph G + K1 is intrinsically linked if and only if G is non-planar

Ryan Ottman (UCSB) A Sufficient Condition for Intrinsic Linking August 19, 2010 10 / 13



Deficient graphs

Lemma (Sachs)

The graph G + K1 is intrinsically linked if and only if G is non-planar

Lemma (Blain et. al. and Ozawa et. al.)

The graph G + K2 is intrinsically knotted if and only if G is non-planar
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Deficient graphs

k 1 2 3 4 5 6 ≥ 7

knotted 7 5,5 3,3,3 3,2,2,2 2,2,2,2,1 2,2,1,1,1,1 All
4,3,2 4,2,2,1 3,2,2,1,1 3,1,1,1,1,1
4,4,1 3,3,2,1 3,2,1,1,1

3,3,1,1

not knotted 6 4,4 3,3,2 2,2,2,2 2,2,2,1,1 2,1,1,1,1,1 None
n,2,2 4,2,1,1 2,2,1,1,1
n,3,1 3,2,2,1 n,1,1,1,1

n,2,1,1
n,1,1,1

Table: Intrinsic knotting of k-partite graphs. (Blain et. al.)
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Deficient graphs

k 1 2 3 4 5 6 ≥ 7
linked 7-e 4,4-e 4,3,1-e 2,2,2,2-e 2,2,1,1,1-(b,c) 2,1,1,1,1,1-e All

3,3,2-e 3,2,1,1-(b,c) 3,1,1,1,1-(b,c)
4,2,2-e 4,2,1,1-e 4,1,1,1,1-e

3,3,1,1-e 3,2,1,1,1-e
3,2,2,1-e 2,2,2,1,1-e

not linked 6-e n,3-e 3,2,2-e 2,2,2,1-e 2,2,1,1,1-(a,b) 1,1,1,1,1,1-e None
n,2,1-e n,1,1,1-e 2,2,1,1,1-(c,d)
3,3,1-e 3,2,1,1-(a,b) 3,1,1,1,1-(a,b)

3,2,1,1-(a,c) 2,1,1,1,1-e
3,2,1,1-(c,d)

Table: Intrinsic Linking of 1 Deficient Graphs.
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n,2,1-e n,1,1,1-e 2,2,1,1,1-(c,d)
3,3,1-e 3,2,1,1-(a,b) 3,1,1,1,1-(a,b)

3,2,1,1-(a,c) 2,1,1,1,1-e
3,2,1,1-(c,d)

Table: Intrinsic Linking of 1 Deficient Graphs.
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Deficient graphs

k 1 2 3 4 5 6 ≥ 7
linked 7-e 4,4-e 4,3,1-e 2,2,2,2-e 2,2,1,1,1-(b,c) 2,1,1,1,1,1-e All

3,3,2-e 3,2,1,1-(b,c) 3,1,1,1,1-(b,c)
4,2,2-e 4,2,1,1-e 4,1,1,1,1-e

3,3,1,1-e 3,2,1,1,1-e
3,2,2,1-e 2,2,2,1,1-e

not linked 6-e n,3-e 3,2,2-e 2,2,2,1-e 2,2,1,1,1-(a,b) 1,1,1,1,1,1-e None
n,2,1-e n,1,1,1-e 2,2,1,1,1-(c,d)
3,3,1-e 3,2,1,1-(a,b) 3,1,1,1,1-(a,b)

3,2,1,1-(a,c) 2,1,1,1,1-e
3,2,1,1-(c,d)

Table: Intrinsic Linking of 1 Deficient Graphs.

k 1 2 3 4 5 6 7 ≥ 8
knotted 8-e 5,5-e 3,3,3-e 3,2,2,2-e 2,2,2,2,1-e 2,2,1,1,1,1-(b,c) 2,1,1,1,1,1,1-e All

4,3,2-e 4,2,2,1-e 3,2,1,1,1-(b,c) 3,1,1,1,1,1-(b,c)
4,4,1-e 3,3,2,1-e 4,2,1,1,1-e 3,2,1,1,1,1-e

4,3,1,1-e 3,3,1,1,1-e 2,2,2,1,1,1-e
3,2,2,1,1-e 4,1,1,1,1,1-e

not knotted 7-e n,4-e 3,3,2-e 3,3,1,1-e 3,2,1,1,1-(c,d) 2,2,1,1,1,1-(a,b) 1,1,1,1,1,1,1-e None
n,2,2-e 2,2,2,2-e 3,2,1,1,1-(a,b) 2,2,1,1,1,1-(c,d)
n,3,1-e 3,2,2,1-e 3,2,1,1,1-(a,c) 3,1,1,1,1,1-(a,b)

n,2,1,1-e 2,2,2,1,1-e 2,1,1,1,1,1-e
n,1,1,1,1-e

Table: Intrinsic knotting of 1 deficient graphs.
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Thank You
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