Achirality and linking numbers of links

Saori Matsuoka

Tokyo Woman's Christian University

August 18, 2010

[ABSTRACT]

An ordered and oriented n-component link L in the 3-sphere is said to be achiral if it is ambient isotopic to its mirror image ignoring the orientation and ordering of the components. For an ordered and oriented n-component link L, let λ_L be the product of linking numbers of all 2-component sublinks in L. For n=4m+3, where m is a non-negative integer, we show that if L is achiral then $\lambda_L=0$. And for $n\neq 4m+3$, we show that there exists an n-component achiral link L with $\lambda_L\neq 0$ by using achiral embeddings of complete graphs with n vertices K_n .

Contents

- §1. Introduction
- §2. Results of Flapan and Weaver for achiral embeddings of complete graphs
- §3. Sketch proof of Theorem 2

§1. Introduction

Definition

Let $L = K_1 \cup K_2 \cup \cdots \cup K_n$ be an oriented and ordered *n*-component link in 3-sphere \mathbb{S}^3 . A link L is said to be achiral if there exists an orientation-reversing self homeomorphism $f: \mathbb{S}^3 \to \mathbb{S}^3$ such that f(L) = L that ignores orientations and ordering.

$$ullet \lambda_{ij} = \ell k(K_i,K_j) \; (i < j,i,j=1,2,\ldots,n) \ ullet \; \lambda_L = \prod_{i < j,i,j=1,2,\ldots,n} \lambda_{ij}$$

Theorem 1

In the case of n = 4m + 3 (m is a non-negative integer), if L is achiral as an unordered unoriented n-component link, then $\lambda_L = 0$.

Theorem 2

In the case of $n \neq 4m + 3$ (m is a non-negative integer), there exists an n-component achiral link with $\lambda_L \neq 0$.

§2. Results of Flapan and Weaver for achiral embeddings of complete graphs

 K_n : a complete graph

 \tilde{K}_n : an embedding of K_n

Theorem 3 [Flapan and Weaver, 1992]

In the case of $n \neq 4m + 3$ (m is a non-negative integer), K_n is achirally embeddable.

Sketch proof)

• $G: K_{4m}$

• P: a plane in \mathbb{R}^3

 $\cdot C$: a circle on P

• ℓ : a perpendicular line

• $\alpha:G\to G$: an order 4 automorphism of G such that the orbit of every vertex under α has length 4

Place the vertices of G on C so that the 90° rotation about ℓ induces the same permutation of vertices as α .

• $f:\mathbb{R}^3 \to \mathbb{R}^3$: the composition of the 90° rotation about ℓ with the reflection through the plane P

• e_1, \ldots, e_p : representatives from each edge orbit

• E_1, \ldots, E_p : ellipsoids such that symmetric about ℓ and P and meet at the circle C containing the vertices

• E_i^+ : the upper half-ellipsoid of E_i

• E_i^- : the lower half-ellipsoid of E_i

$$(1)\alpha^2(e_i) = e_i$$

Embed e_i in E_i^+ so that it is invariant under the 180° rotation f^2 about ℓ . And embed $\alpha(e_i)$ as the image of this edge under f, contained in E_i^-

$$(2)\alpha^2(e_i) \neq e_i$$

Let vertices v and w be the ends of e_i . Consider the semicircles A and B of C with end points v and $\alpha^2(v)$, the antipodal point of v. Without loss of generality, v and w are both contained in A. $\alpha^2(v)$ and $\alpha^2(w)$ are both contained in B. Embed e_i in E_i^+ so that it is disjoint from its image under f^2 . Embed $\alpha(e_i)$, $\alpha^2(e_i)$, $\alpha^3(e_i)$ as the images of e_i under f, f^2, f^3 respectively.

Then we have an achiral embedding \tilde{K}_{4m} .

Fig. 3 $\alpha^2(e_i) = e_i$ (In the case of m=2)

Fig. 4 $\alpha^2(e_i) \neq e_i$ (In the case of m=2)

For K_{4m+1} , first we embed a subgraph K_{4m} of K_{4m+1} achirally as stated above. Then add the final vertex at the point where the plane P intersects a line ℓ , with straight edges connecting this vertex to all the other vertices. This embedding is achiral.

For K_{4m+2} , embed subgraph K_{4m} of K_{4m+2} as stated above. Let E_0 be an additional symmetric ellipsoid that is contained in the interior of all the other E_i . Then add the remaining two vertices at $\ell \cap E_0^+$ and $\ell \cap E_0^-$. Connect these last two vertices to each other by a line segment in ℓ and to the other 4m vertices by intersections of E_0^{\pm} with vertical planes. We have an achiral embedding of K_{4m+2} .

Theorem 2

In the case of $n \neq 4m + 3$ (m is a non-negative integer), there exists an n-component achiral link with $\lambda_L \neq 0$.

Sketch proof)

Case 1: construction of a 4m-component achiral link

We consider a diagram of the achiral embedding of K_{4m} in §2. Fig.7 is a diagram of an achiral embedding of K_8 .

We replace vertices with circles as shown in Fig.8.

Next, we replace edges with H_1 or H_2 as shown in Fig.9.

Fig. 9

By an edge $v_i v_{i+j}$ $(1 \le i \le m, 1 \le j \le 2m)$, we denote the representatives under α . Replace $v_i v_{i+j}$ with H_1 , $\alpha(v_i v_{i+j})$ with H_2 , $\alpha^2(v_i v_{i+j})$ with H_1 , and $\alpha^3(v_i v_{i+j})$ with H_2 . We have a diagram composed of circles and edges.

Fig. 10 (In the case of m=2)

We consider the operation on a diagram as shown in Fig.11 and call it a band sum along an edge.

Fig. 11 Band sum along an edge

We operate the band sums along all edges connecting two circles. Then we have a link diagram.

Rotating the diagram by 90°, we have the mirror image of it. That link is an example of a 4m-component achiral link with $\lambda_L \neq 0$.

Fig. 12 8-component achiral link

Case 2: construction of a (4m+1)-component achiral link

We consider a diagram of the achiral embedding of K_{4m+1} in §2.

From a vertex v_i $(i=1,2,\ldots,4m)$, an edge v_iv_{4m+1} goes out between edges $v_iv_{[i+2m]}$ and $v_iv_{[i+2m+1]}$, where [k]=k if $k\leq 4m$ and [k]=k-4m if k>4m for a positive number k.

We replace vertices with circles. And for $i=1,2,\cdots,m$, we replace edges $v_{4m+1}v_i$ and $\alpha^2(v_{4m+1}v_i)$ with H_1 's, $\alpha(v_{4m+1}v_i)$ and $\alpha^3(v_{4m+1}v_i)$ with H_2 's and the other edges as in Case 1.

We operate the band sums along all edges connected circles.

Then we have an achiral link diagram.

Fig. 14 5-component achiral link

Case 3: construction of a (4m+2)-component achiral link

We consider a diagram of the achiral embedding of K_{4m+2} in §2.

From a vertex v_i $(1 \le i \le 2m)$, edges $v_i v_{i+2m}$, $v_i v_{4m+2}$, $v_i v_{4m+1}$ and $v_i v_{[i+2m+1]}$ go out in this order in the counterclockwise direction.

From a vertex v_i $(2m+1 \le i \le 4m)$, edges $v_i v_{[i+2m]}$, $v_i v_{4m+1}$, $v_i v_{4m+2}$ and $v_i v_{[i+2m+1]}$ go out in this order in the counterclockwise direction.

We suppose that v_{4m+1} and v_{4m+2} are in an ε -neighborhood as shown in Fig.15.

_f13

First, we replace v_{4m+1} and v_{4m+2} with a Hopf link $C_{4m+1} \cup C_{4m+2}$.

We take 4m points p_i $(1 \le i \le 4m)$ on C_{4m+1} and 4m points q_i $(1 \le i \le 4m)$ on C_{4m+2} as shown in Fig.16.

Fig. 16

We connect p_i to v_i and q_i to v_i by an edge as nown in Fig. 17 shown in Fig.17.

Fig.17 shows in the case of m = 3.

An edge $p_i v_i$ is under $p_j v_j$ (i > j) and over C_{4m+1} .

 $q_i v_i$ is over $q_j v_j$ (i > j) and under C_{4m+2} . $p_k v_k$ is over $q_l v_l$ $(k, l = 1, 2, \cdots, 4m)$ in an ε -neighborhood. Next, we replace a vertex v_i $(1 \le i \le 4m)$ with a circle as in Case 1. And we replace $p_i v_i$ with H_1 and $q_i v_i$ with H_2 (i = 1, 2, ..., 4m). The other edges are replaced as in Case 1.

Finally, we operate the band sums along all edges connecting two circles. And we have a diagram of a (4m+2)-component link.

Fig. 18 6-component achiral link

Rotating the diagram by 90° and flyping a component of a Hopf link in an ε -neighborhood, we have a mirror image of the diagram.