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[ABSTRACT]

An ordered and oriented n-component link L
in the 3-sphere is said to be achiral if it is am-
bient isotopic to its mirror image ignoring the
orientation and ordering of the components.
For an ordered and oriented n-component link
L, let A; be the product of linking numbers
of all 2-component sublinks in L. For n =
4m + 3, where m is a non-negative integer, we
show that if L is achiral then A\; = 0. And for
n # 4m + 3, we show that there exists an n-
component achiral link L with Ay # 0 by using
achiral embeddings of complete graphs with n
vertices K,,.
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81. Introduction

|Definition|

Let L = KjUK,U.--UK, be an oriented and
ordered n-component link in 3-sphere S°. A

link L is said to be achiral if there exists an
orientation-reversing self homeomorphlsm

f:S* = §* such that f(L) = L that ignores ori-
entations and ordering.

')\ij_—‘ﬁk(Ki,Kj) (z‘<j,z',j:1,2,...,n)
ar= ]

i<j,i,j=1,2,....n

| Theorem 1|

In the case of n = 4m + 3 (m is a non-negative
integer), if L is achiral as an unordered unori-
ented n-component link, then A\ =0

'Theorem 2|

In the case of n # 4m + 3 (m is a non-negative

integer), there exists an n-component achiral
link with A\; #£0 .




82. Results of Flapan and Weaver
for achiral embeddings of complete graphs

K, : a complete graph

K, : an embedding of K,

|Theorem 3| [Flapan and Weaver, 1992]

In the case of n # 4m + 3 (m is a non-negative
integer), K, is achirally embeddable.

Sketch proof)

* G Ky

« P : a plane in R3
(' : acircle on P

* { : a perpendicular line

*a: G — G: an order 4 automorphism of G
such that the orbit of every ver-
tex under « has length 4

Place the vertices of G on C so that the 90°
rotation about { induces the same permutation
of vertices as o. 9
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« f:R> = R’ : the composition of the 90° rot-

ation about £ with the reflection
through the plane P

..,€p : representatives from each edge or-

bit

.., Ey : ellipsoids such that symmetric

about ¢ and P and meet at the
circle ' containing the vertices

: the upper half-ellipsoid of E;
: the lower half-ellipsoid of E;

ng

I E.




(Da*(e:) = e;
Embed ¢; in Ef so that it is invariant under
the 180° rotation f* about ¢£. And embed afe;)

as the image of this edge under f, contained
in B

(2)a?(e:) # e

Let vertices v and w be the ends of ¢;. Consider
the semicircles A and B of C with end points
v and o?(v), the antipodal point of v. Without
loss of generality, v and w are both contained
in A. o?(v) and o*(w) are both contained in B.
Embed ¢; in E; so that it is disjoint from its
image under f2. Embed a(e;), a?(e;), a3(e;) as the
images of e; under f, f2, f3 respectively.

Then we have an achiral embedding K-
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Fig. 3 a’(e) =e, Fig. 4 o’(e) #e,

(In the case of m=2) (In the case of m=2)



For Ky, first we embed a subgraph Ky,
of Ky,41 achirally as stated above. Then add
the final vertex at the point where the plane P
intersects a line ¢, with straight edges connect-
ing this vertex to all the other vertices. This
embedding is achiral.

For K42, embed subgraph K,, of Ky, ., as
stated above. Let F; be an additional symmet-
ric ellipsoid that is contained in the interior of
all the other F;. Then add the remaining two
vertices at /NE; and /NE;. Connect these last
two vertices to each other by a line segment in
¢ and to the other 4m vertices by intersections
of Ey with vertical planes. We have an achiral
embedding of K,,.o.




§3. Sketch proof of Theorem 2

Theorem 2|

In the case of n # 4m + 3 (m is a non-negative
integer), there exists an n-component achiral
link with \j, # 0.

Sketch proof)
Case 1 : construction of a 4m-component achi-
ral link

We consider a diagram of the achiral em-
bedding of K, in §2. Fig.7 is a diagram of an
achiral embedding of Kj.




We replace vertices with circles as shown in
Fig.8.

Fig. 8

Next, we replace edges with H; or H; as
shown in Fig.9.
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By an edge vvi; (1Si<Sm,1 <5 < 2m), we
denote the representatives under a. Replace
ViVitj with H1, Cl’(’Uz"UHj) with HQ, a2(viv,-+j) with
Hi, and o3(vvy,) with Hy. We have a diagram
composed of circles and edges.

V: Vs
Fig. 10 (In the case of m=2)

We consider the operation on a diagram as
shown in Fig.11 and call it a band sum along
an edge.

”~ -~ - -~
I \ 3 [ | W |
\.. _l \.. } \ ’l

Fig. 11 Band sum along an edge



We operate the band sums along all edges
connecting two circles. Then we have a link
diagram.

Rotating the diagram by 90°, we have the
mirror image of it. That link is an example of
a 4m-component achiral link with A £ 0.

Fig. 12 8-component achiral link
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Case 2 : construction of a (4m + 1)-component
achiral link

We consider a diagram of the achiral embed-
ding of Ky, in §2.

From a vertex v; (: = 1,2,...,4m), an edge
V,Vgm+1 BO€S out between edges vV, 9m) and ViV 9m-11]
where [k]| =k if k S 4m and [k] = k—4dm if k > 4m
for a positive number k.

’V| !U+

Vs

V% Vs
Fig. 13 (In the case of m=1)
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We replace vertices with circles. And for
1 = 1,2,---,m, we replace edges wv4,+1v; and
2 (Vgme1v;) with Hy’s, a(vgmy1v;) and o (vgme1v;)
with Hy’s and the other edges as in Case 1.

We operate the band sums along all edges
connected circles.

Then we have an achiral link diagram.

C——)

QW¢

o
L%{ g

Fig. 14 5-component achiral link
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Case 3: construction of a (4m + 2)-component
achiral link

We consider a diagram of the achiral embed-
ding of Ky,,.- in §2.

From a vertex v; (1 £ ¢ £ 2m), edges v;v;1om,
Vil4m+25 ViVam+1 aNd ;U 49m41) 8O Out in this order
in the counterclockwise direction.

From a vertex v; 2m +1 £ i £ 4m), edges
ViVli+2m]s ViV4m+1ly UiU4me2 and ViVli+2m+1] 8O out in
this order in the counterclockwise direction.

We suppose that vy, and vg,,2 are in an
e-neighborhood as shown in Fig.15.

Y Vg

Va
Fig. 15 (In the case of m=1)
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First, we replace vy,,,1 and v4,;5 with a Hopf
link Clpny1 U Cypya.

We take 4m points p; (1 £ i £ 4m) on Cypy
and 4m points ¢; (1 =i £ 4m) on Cy, » as shown
in Fig.16.
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We connect p; to v; and g, to v; by an edge as
shown in Fig.17.

Fig.17 shows in the case of m = 3.

Vi

......... %Mle-neiahbobhoo&

An edge p;v; is under p;v; (i > j) and over
C4m+1-
giv; is over g;v; (¢ > j) and under Cly,yo.

prU; is over givy (k,l=1,2,--- ,4m) in an e-neighborhood.
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Next, we replace a vertex v; (1 £ 7 < 4m) with
a circle as in Case 1. And we replace p;v; with
H, and g;v; with Hy (1 =1,2,...,4m). The other
edges are replaced as in Case 1.

Finally, we operate the band sums along all
edges connecting two circles. And we have a
diagram of a (4m + 2)-component link.

Fig. 18 6-component achiral link

Rotating the diagram by 90° and flyping a
component of a Hopf link in an e-neighborhood,
we have a mirror image of the diagram.




