Topological Symmetry Groups of K_1 to K_6 and K_{4r+3}

Dwayne Chambers

August 18, 2010

Claremont Graduate University

Dwayne Chambers Topological Symmetry Groups of K_1 to K_6 and K_{4r+3}

The following definitions should be familiar by now.

Definition: $TSG(\Gamma)$

The **topological symmetry group** of a graph Γ embedded in S^3 is the subgroup of $\operatorname{Aut}(\Gamma)$ induced by homeomorphisms of the graph in S^3 . It is denoted by $\operatorname{TSG}(\Gamma)$

Definition: $TSG_+(\Gamma)$

The orientation preserving topological symmetry group, $TSG_+(\Gamma)$, is the subgroup of $TSG(\Gamma)$ induced by orientation preserving homeomorphisms of (S^3, Γ) .

The topological symmetry group of any embedding of K_1 is trivial. Literally!

- The topological symmetry group of any embedding of K_1 is trivial. Literally!
- Easy to guess $TSG(K_2) = Z_2$.

- The topological symmetry group of any embedding of K_1 is trivial. Literally!
- Easy to guess $TSG(K_2) = Z_2$.
- Thus K_3 is first exciting case.

- The topological symmetry group of any embedding of K_1 is trivial. Literally!
- Easy to guess $TSG(K_2) = Z_2$.
- Thus K_3 is first exciting case.
- Let Γ be an 'unknotted' embedding of K_3

- The topological symmetry group of any embedding of K_1 is trivial. Literally!
- Easy to guess $TSG(K_2) = Z_2$.

Thus K_3 is first exciting case.

Let Γ be an 'unknotted' embedding of K_3

Then $\mathrm{TSG}(\Gamma) = \mathrm{TSG}_+(\Gamma) = \mathrm{D}_3$

Consider K_3 again. But suppose an edge had 8_{17} on it.

Consider K_3 again. But suppose an edge had 8_{17} on it.

Figure: Knotted embedding of K_3 .

Consider K_3 again. But suppose an edge had 8_{17} on it.

Figure: Knotted embedding of K_3 .

817 is non-invertible.

Consider K_3 again. But suppose an edge had 8_{17} on it.

Figure: Knotted embedding of K_3 .

817 is non-invertible.

Thus $\mathrm{TSG}(\Gamma)=\mathrm{D}_3$ but $\mathrm{TSG}_+(\Gamma)=\mathbb{Z}_3.$

Adding Knots to K_3

Note: Knots on K_3 can be slithered from edge to edge hence (123) is always an element in $TSG(K_3)$ and thus we can't have $TSG(K_3) = \mathbb{Z}_2$ or $TSG(K_3) = \langle e \rangle$.

Adding Knots to K_3

Note: Knots on K_3 can be slithered from edge to edge hence (123) is always an element in $TSG(K_3)$ and thus we can't have $TSG(K_3) = \mathbb{Z}_2$ or $TSG(K_3) = \langle e \rangle$.

Not true for 3-connected graphs including K_n for n > 3. Distinct knot on each edge implies $TSG(K_n) = \langle e \rangle$

Adding Knots to K_3

Note: Knots on K_3 can be slithered from edge to edge hence (123) is always an element in $TSG(K_3)$ and thus we can't have $TSG(K_3) = \mathbb{Z}_2$ or $TSG(K_3) = \langle e \rangle$.

Not true for 3-connected graphs including K_n for n > 3. Distinct knot on each edge implies $TSG(K_n) = \langle e \rangle$

Knots in Γ	TSG(Γ)	$\mathrm{TSG}_{+}(\Gamma)$
None	D_3	D_3
8 ₁₇	D_3	\mathbb{Z}_3
$8_{17} \# 3_1$	\mathbb{Z}_3	\mathbb{Z}_3

Table: TSG Summary for K_3

In general, let Γ be a complete graph in S^3

The Complete Graph Theorem[2] is useful in paring down the possibilities for $\mathrm{TSG}_+(\Gamma).$

Complete Graph Theorem (Flapan, Naimi and Tamvakis 2006)

A finite group H is $TSG_+(\Gamma)$ for some embedding Γ of a complete graph in S^3 if and only if H is a finite cyclic group, a dihedral group, A_4 , S_4 or A_5 or a subgroup of $D_m \times D_m$ for some odd m.

Recall.

A₄ Theorem [Flapan, Mellor, Naimi]

A complete graph K_m with $m \ge 4$ has an embedding Γ in S^3 such that $\mathrm{TSG}_+(\Gamma) = A_4$ if and only if $m \equiv 0, 1, 4, 5, 8 \pmod{12}$.

S₄ Theorem [Flapan, Mellor, Naimi]

A complete graph K_m with $m \ge 4$ has an embedding Γ in S^3 such that $\mathrm{TSG}_+(\Gamma) = \mathrm{S}_4$ if and only if $m \equiv 0, 4, 8, 12, 20 \pmod{24}$.

A₅ Theorem [Flapan, Mellor, Naimi]

A complete graph K_m with $m \ge 4$ has an embedding Γ in S^3 such that $\mathrm{TSG}_+(\Gamma) = A_5$ if and only if $m \equiv 0, 1, 5, 20 \pmod{60}$.

Key Theorems contd...

Dihedral Theorem

A complete graph K_n has an embedding in S^3 , Γ such that $TSG_+(\Gamma) \cong D_m$ if and only if one of the following holds:

- (1) m is odd and n = mr, mr + 1, mr + 2, or mr + 3
- (2) m > 2 is even and m|n
- (3) *m* is 2 and *n* is even for n > 2
- (4) *m* is 2 and n = 4q + 1 for some $q \in \mathbb{N}$

Key Theorems contd...

Dihedral Theorem

A complete graph K_n has an embedding in S^3 , Γ such that $TSG_+(\Gamma) \cong D_m$ if and only if one of the following holds:

- (1) m is odd and n = mr, mr + 1, mr + 2, or mr + 3
- (2) m > 2 is even and m|n
- (3) *m* is 2 and *n* is even for n > 2
- (4) *m* is 2 and n = 4q + 1 for some $q \in \mathbb{N}$

Cyclic Theorem

A complete graph K_n has an embedding in S^3 , Γ such that $\mathrm{TSG}_+(\Gamma) \cong \mathbb{Z}_m$ if and only if one of the following holds: (1) m is odd and n = mr, mr + 1, mr + 2, or mr + 3(2) m > 2 is even and m|n(3) m is 2 and n is not 3

Key Lemmas

Auto-Order Lemma

Let n > 3 and let Γ be an embedding of K_n in S^3 . Suppose that ϕ is an automorphism of Γ which is induced by an orientation preserving homeomorphism of (S^3, Γ) . Then $\operatorname{order}(\phi) \le n$. Furthermore if ϕ is induced by an orientation reversing homeomorphism of (S^3, Γ) and n = 5 or 6 then $\operatorname{order}(\phi) \le 6$.

Chiral Knot Lemma

For any group G such that there exists an embedding Γ of a 3-connected graph in S^3 with $\mathrm{TSG}_+(\Gamma) \cong G$, then there also exists Γ' such that $\mathrm{TSG}(\Gamma') \cong G$.

 Γ an embedding of K_n in S^3 for n > 3.

Γ an embedding of K_n in S^3 for n > 3.

 $\mathrm{TSG}(\Gamma) \leq S_n$

 Γ an embedding of K_n in S^3 for n > 3.

 $\mathrm{TSG}(\Gamma) \leq S_n$

Theorems applied to first determine $TSG_{+}(\Gamma)$ groups.

Subgroups of S_4 .

Subgroups of S_4 .

 $\mathrm{S}_4, A_4, \mathrm{D}_4, \mathrm{D}_3, \mathrm{D}_2, \mathbb{Z}_4, \mathbb{Z}_3, \mathbb{Z}_2, \langle e \rangle$

Subgroups of S_4 .

$\mathrm{S}_4, A_4, \mathrm{D}_4, \mathrm{D}_3, \mathrm{D}_2, \mathbb{Z}_4, \mathbb{Z}_3, \mathbb{Z}_2, \langle e \rangle$

Table 2: Realizability of subgroups of S_4 as $TSG_+(K_4)$			
Subgroup	TSG_+	Reason	
S_4	Yes	By S_4 Theorem	
A_4	Yes	By A_4 Theorem	
D ₄	Yes	By Dihedral Theorem	
D ₃	Yes	By Dihedral Theorem	
D ₂	Yes	By Dihedral Theorem	
\mathbb{Z}_4	Yes	By Cyclic Theorem	
\mathbb{Z}_3	Yes	By Cyclic Theorem	
\mathbb{Z}_2	Yes	By Cyclic Theorem	

By Chiral Knot lemma above groups can also be $TSG(K_4)$.

Case for K_5

Subgroups of S_5

Dwayne Chambers Topological Symmetry Groups of K_1 to K_6 and K_{4r+3}

Subgroups of S_5

 S_5 , A_5 , S_4 , A_4 , $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$, D_6 , D_5 , D_4 , D_3 , D_2 , \mathbb{Z}_6 , \mathbb{Z}_5 , \mathbb{Z}_4 , \mathbb{Z}_3 , \mathbb{Z}_2

 $A \rtimes B$ - semidirect product of a group B acting on a group A.

Subgroups of S_5

 S_5 , A_5 , S_4 , A_4 , $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$, D_6 , D_5 , D_4 , D_3 , D_2 , \mathbb{Z}_6 , \mathbb{Z}_5 , \mathbb{Z}_4 , \mathbb{Z}_3 , \mathbb{Z}_2

 $A \rtimes B$ - semidirect product of a group B acting on a group A.

By the Complete Graph Theorem we can't have $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$ or S_5 as $\mathrm{TSG}_+(K_5)$.

A₅, S₄, A₄, D₆, D₅, D₄, D₃, D₂, \mathbb{Z}_6 , \mathbb{Z}_5 , \mathbb{Z}_4 , \mathbb{Z}_3 , and \mathbb{Z}_2 are the only candidates for $TSG_+(K_5)$

$TSG_+(K_5)$ results

$TSG_+(K_5)$ results

Table 3: Realizability of subgroups of S_5 as $\mathrm{TSG}_+({\mathcal K}_5)$			
Subgroup	TSG_+	Reason	
A ₅	Yes	By A ₅ Theorem	
S_4	No	By S ₄ Theorem	
A_4	Yes	By A ₄ Theorem	
D_6	No	By Auto-Order Lemma	
D_5	Yes	By Dihedral Theorem	
D ₄	No	By Dihedral Theorem	
D ₃	Yes	By Dihedral Theorem	
D ₂	Yes	By Dihedral Theorem	
\mathbb{Z}_6	No	By Auto-Order Lemma	
\mathbb{Z}_5	Yes	By Cyclic Theorem	
\mathbb{Z}_4	No	By Cyclic Theorem	
\mathbb{Z}_3	Yes	By Cyclic Theorem	
\mathbb{Z}_2	Yes	By Cyclic Theorem	

By Chiral Knot lemma each group that was "yes" in Table 3 can also be $\mathrm{TSG}(\mathcal{K}_5)$.

By Chiral Knot lemma each group that was "yes" in Table 3 can also be $\mathrm{TSG}(\mathcal{K}_5).$

Need to consider S_5 , S_4 , D_6 , D_4 , \mathbb{Z}_6 , \mathbb{Z}_4 and $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$ for $TSG(\mathcal{K}_5)$.

Figure: $TSG(\Gamma) = S_5$.

Figure: $TSG(\Gamma) = S_5$.

Thus $TSG(K_5)$ can be S_5 and S_4 .

Figure: $TSG(\Gamma) = D_6$.

Figure: $TSG(\Gamma) = D_6$.

Automorphism (123)(45) has order 6.

Figure: $TSG(\Gamma) = D_6$.

Automorphism (123)(45) has order 6. Thus $TSG(K_5) = \langle (123), (45), (23) \rangle = D_6.$

Figure: $TSG(\Gamma) = D_6$.

Automorphism (123)(45) has order 6. Thus $TSG(K_5) = \langle (123), (45), (23) \rangle = D_6.$ Add 8_{17} to red edges to obtain $TSG(K_5) = \mathbb{Z}_6$

Figure: $TSG(\Gamma) = D_4$.

Figure: $TSG(\Gamma) = D_4$.

Thus $TSG(K_5)$ can be D_4 and \mathbb{Z}_4 .

$TSG(K_5)$ Table

Table 4: Realizability of subgroups of S_5 as $TSG(K_5)$		
Subgroup	TSG	Reason
S_5	Yes	See above sketch and argument
A_5	Yes	By Chiral Knot Lemma
S_4	Yes	See above sketch and argument
<i>A</i> ₄	Yes	By Chiral Knot Lemma
D ₆	Yes	See above sketch and argument
D_5	Yes	By Chiral Knot Lemma
D ₄	Yes	See above sketch and argument
D_3	Yes	By Chiral Knot Lemma
D ₂	Yes	By Chiral Knot Lemma
\mathbb{Z}_6	Yes	See above sketch and argument
\mathbb{Z}_5	Yes	By Chiral Knot Lemma
\mathbb{Z}_4	Yes	See above sketch and argument
\mathbb{Z}_3	Yes	By Chiral Knot Lemma
\mathbb{Z}_2	Yes	By Chiral Knot Lemma

Last $TSG(K_5)$ result

Need to consider $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$ for $\mathrm{TSG}(K_5)$.

Last $TSG(K_5)$ result

Need to consider $\mathbb{Z}_5 \rtimes \mathbb{Z}_4$ for $\mathrm{TSG}(K_5)$.

All other results have been "Yes" so far...

Subgroups of S_6 :

 $\begin{array}{l} \mathrm{S}_6, \ A_6, \ \mathrm{S}_5, \ A_5, \ \mathrm{S}_3 \wr \mathbb{Z}_2, \ \mathrm{S}_4 \times \mathbb{Z}_2, \ A_4 \times \mathbb{Z}_2, \ \mathrm{S}_4, \ A_4, \ \mathbb{Z}_5 \rtimes \mathbb{Z}_4, \\ \mathrm{D}_3 \times \mathrm{D}_3, \ (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4, \ (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2, \ \mathrm{D}_3 \times \mathbb{Z}_3, \ \mathbb{Z}_3 \times \mathbb{Z}_3, \ \mathrm{D}_6, \\ \mathrm{D}_5, \ \mathrm{D}_4, \ \mathrm{D}_4 \times \mathbb{Z}_2, \ \mathrm{D}_3, \ \mathrm{D}_2, \ \mathbb{Z}_6, \ \mathbb{Z}_5, \ \mathbb{Z}_4, \ \mathbb{Z}_4 \times \mathbb{Z}_2, \ \mathbb{Z}_3, \ \mathbb{Z}_2, \ \text{and} \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2. \end{array}$

Note $A \wr B$ represents a wreath product of A by B.

Subgroups of S_6 :

 $\begin{array}{l} \mathrm{S}_6, \ A_6, \ \mathrm{S}_5, \ A_5, \ \mathrm{S}_3 \wr \mathbb{Z}_2, \ \mathrm{S}_4 \times \mathbb{Z}_2, \ A_4 \times \mathbb{Z}_2, \ \mathrm{S}_4, \ A_4, \ \mathbb{Z}_5 \rtimes \mathbb{Z}_4, \\ \mathrm{D}_3 \times \mathrm{D}_3, \ (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4, \ (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2, \ \mathrm{D}_3 \times \mathbb{Z}_3, \ \mathbb{Z}_3 \times \mathbb{Z}_3, \ \mathrm{D}_6, \\ \mathrm{D}_5, \ \mathrm{D}_4, \ \mathrm{D}_4 \times \mathbb{Z}_2, \ \mathrm{D}_3, \ \mathrm{D}_2, \ \mathbb{Z}_6, \ \mathbb{Z}_5, \ \mathbb{Z}_4, \ \mathbb{Z}_4 \times \mathbb{Z}_2, \ \mathbb{Z}_3, \ \mathbb{Z}_2, \ \text{and} \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2. \end{array}$

Note $A \wr B$ represents a wreath product of A by B.

Approach will be similar but a lot more groups to consider.

And now onto $TSG_+(K_{4r+3})$

And now onto $TSG_+(K_{4r+3})$

Why K_{4r+3} ?

Let's look at our favourite K_{4r+3} graph, K_{15} .

Let's look at our favourite K_{4r+3} graph, K_{15} .

The Complete Graph theorem tells us $\text{TSG}_+(\Gamma)$ is a subgroup of S_{15} which is either cyclic, dihedral, A_4 , S_4 or A_5 or a subgroup of $D_m \times D_m$.

Let's look at our favourite K_{4r+3} graph, K_{15} .

The Complete Graph theorem tells us $TSG_+(\Gamma)$ is a subgroup of S_{15} which is either cyclic, dihedral, A_4 , S_4 or A_5 or a subgroup of $D_m \times D_m$.

That's a lot less work than sorting through 1,307,674,368,000 elements of S_{15} looking for possible subgroups.

Complete Graph Theorem significantly reduces the number of possible groups that can be $\mathrm{TSG}_+(\Gamma)$ for a complete graph, Γ ...

Complete Graph Theorem significantly reduces the number of possible groups that can be $\mathrm{TSG}_+(\Gamma)$ for a complete graph, $\Gamma...$

...but there are still quite a few possibilities left to check. In particular ALL the subgroups of $D_m \times D_m$.

The beginning of a new theorem

Lemma (Flapan 1995)

If ϕ is an order 2 automorphism induced by an orientation preserving homeomorphism of K_n in S^3 , then all cycles of ϕ are of order 2 and there are at most 2 fixed vertices.

Lemma (Flapan 1995)

If ϕ is an order 2 automorphism induced by an orientation preserving homeomorphism of K_n in S^3 , then all cycles of ϕ are of order 2 and there are at most 2 fixed vertices.

We use the above lemma to prove the following key lemma.

Lemma (Flapan 1995)

If ϕ is an order 2 automorphism induced by an orientation preserving homeomorphism of K_n in S^3 , then all cycles of ϕ are of order 2 and there are at most 2 fixed vertices.

We use the above lemma to prove the following key lemma.

No D_2 Lemma

There is no embedding Γ of K_{4r+3} in S^3 such that $D_2 \leq TSG_+(\Gamma)$.

Implications of No D_2

Why is the No D_2 Lemma significant?

Why is the No D_2 Lemma significant? A₄, S₄, A₅, and $D_m \times D_m$ all have D_2 as a subgroup.

Why is the No D_2 Lemma significant?

 A_4 , S_4 , A_5 , and $D_m \times D_m$ all have D_2 as a subgroup.

Proving the No D_2 Lemma significantly reduces the possibilities from the Complete Graph Theorem.

Summary of Proof Story

In our research we were able to prove a number of lemmas to greatly reduce the number of possibilities for $TSG_+(K_{4r+3})$. Thus obtaining the forward direction of our theorem which determines which groups are "candidates" for $TSG_+(K_{4r+3})$.

In our research we were able to prove a number of lemmas to greatly reduce the number of possibilities for $\text{TSG}_+(K_{4r+3})$. Thus obtaining the forward direction of our theorem which determines which groups are "candidates" for $\text{TSG}_+(K_{4r+3})$.

We then employed tailored versions of the Edge Embedding Lemma[3], the Subgroups Theorem[4] and some creative sketches to prove that each of the above groups ("candidates") actually can occur as $\mathrm{TSG}_+(\Gamma)$ for some embedding of K_{4r+3} .

In our research we were able to prove a number of lemmas to greatly reduce the number of possibilities for $\text{TSG}_+(K_{4r+3})$. Thus obtaining the forward direction of our theorem which determines which groups are "candidates" for $\text{TSG}_+(K_{4r+3})$.

We then employed tailored versions of the Edge Embedding Lemma[3], the Subgroups Theorem[4] and some creative sketches to prove that each of the above groups ("candidates") actually can occur as $\mathrm{TSG}_+(\Gamma)$ for some embedding of K_{4r+3} .

Leading to the following "if and only if" Theorem

The Complete Theorem

A complete characterization of exactly which groups occur as $TSG_+(\Gamma)$ for some embedding Γ of K_{4r+3} .

A complete characterization of exactly which groups occur as $TSG_+(\Gamma)$ for some embedding Γ of K_{4r+3} .

Our Theorem

Let n = 4r + 3. A finite group G is $TSG_+(\Gamma)$ for some embedding Γ of K_n in S^3 if and only if one of the following holds:

1 G is \mathbb{Z}_2

2 G is D_p or \mathbb{Z}_p for p odd and p|n, p|n-1, p|n-2, or p|n-3.

- **3** $G = \mathbb{Z}_p \times \mathbb{Z}_q$ where p and q are odd, p|q and
 - If p > 3, then pq|n.
 - If p = 3, $q \neq 3$, then pq|n or pq|n-3.
 - If p = q = 3, then pq|n or pq|n 3 or pq|n 6.

Revisiting the example of K_{15}

Let's apply our theorem to K_{15}

Let's apply our theorem to K_{15}

Our Theorem for n=15

Let Γ be an embedding of K_{15} in S^3 such that $G = \text{TSG}_+(\Gamma)$. Then one of the following holds:

1 G is \mathbb{Z}_2

Let's apply our theorem to K_{15}

Our Theorem for n=15

Let Γ be an embedding of K_{15} in S^3 such that $G = \text{TSG}_+(\Gamma)$. Then one of the following holds:

1 G is \mathbb{Z}_2

So \mathbb{Z}_2 is one of the groups.

Revisiting the example of K_{15}

Our Theorem contd...

2 G is D_p or \mathbb{Z}_p for p odd and p|15, p|14, p|13, or p|12.

2 G is D_p or \mathbb{Z}_p for p odd and p|15, p|14, p|13, or p|12.

Task 2: Find all odd numbers which meet criteria 2.

2 G is D_p or \mathbb{Z}_p for p odd and p|15, p|14, p|13, or p|12.

Task 2: Find all odd numbers which meet criteria 2.

So $\mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_{13}, \mathbb{Z}_{15}$ are among the groups.

2 G is D_p or \mathbb{Z}_p for p odd and p|15, p|14, p|13, or p|12.

Task 2: Find all odd numbers which meet criteria 2.

So $\mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_{13}, \mathbb{Z}_{15}$ are among the groups.

As well as $\mathrm{D}_3,\mathrm{D}_5,\mathrm{D}_7,\mathrm{D}_{13},\mathrm{D}_{15}.$

2 G is D_p or \mathbb{Z}_p for p odd and p|15, p|14, p|13, or p|12.

Task 2: Find all odd numbers which meet criteria 2.

So $\mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_{13}, \mathbb{Z}_{15}$ are among the groups.

As well as $D_3, D_5, D_7, D_{13}, D_{15}$.

These are the only groups which meet criteria 2.
Our Theorem contd...

3
$$G = \mathbb{Z}_p \times \mathbb{Z}_q$$
 where p and q are odd, $p|q$ and
(a) If $p > 3$, then $pq|15$.
(b) If $p = 3$, $q \neq 3$, then $pq|15$ or $pq|12$.
(c) If $p = q = 3$, then $pq|15$ or $pq|12$ or $pq|9$.

Our Theorem contd...

(a) If
$$p > 3$$
, then $pq|15$.
(b) If $p = 3$, $q \neq 3$, then $pq|15$ or $pq|12$.
(c) If $p = q = 3$, then $pq|15$ or $pq|12$ or $pq|9$.

Task 3: Find p and q as defined above.

Our Theorem contd...

(a) If
$$p > 3$$
, then $pq|15$.
(b) If $p = 3$, $q \neq 3$, then $pq|15$ or $pq|12$.
(c) If $p = q = 3$, then $pq|15$ or $pq|12$ or $pq|9$.

Task 3: Find p and q as defined above.

(a) Not possible

Our Theorem contd...

(a) If
$$p > 3$$
, then $pq|15$.
(b) If $p = 3$, $q \neq 3$, then $pq|15$ or $pq|12$.
(c) If $p = q = 3$, then $pq|15$ or $pq|12$ or $pq|9$.

Task 3: Find p and q as defined above.

(a) Not possible

(b) Not possible

Our Theorem contd...

(a) If
$$p > 3$$
, then $pq|15$.
(b) If $p = 3$, $q \neq 3$, then $pq|15$ or $pq|12$.
(c) If $p = q = 3$, then $pq|15$ or $pq|12$ or $pq|9$.

Task 3: Find p and q as defined above.

(a) Not possible

(b) Not possible

(c) $\mathbb{Z}_3\times\mathbb{Z}_3$ is the only group which satisfies this condition.

Good results

Our theorem tells us that for Γ an embedding of K_{15} in S^3 , $G = \text{TSG}_+(\Gamma)$ must be one of the following:

Our theorem tells us that for Γ an embedding of K_{15} in S^3 , $G = \text{TSG}_+(\Gamma)$ must be one of the following:

\mathbb{Z}_2

$\mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_{13}, \mathbb{Z}_{15}$

${\rm D}_3, {\rm D}_5, {\rm D}_7, {\rm D}_{13}, {\rm D}_{15}$

 $\mathbb{Z}_3\times\mathbb{Z}_3$

Our theorem tells us that for Γ an embedding of K_{15} in S^3 , $G = \text{TSG}_+(\Gamma)$ must be one of the following:

\mathbb{Z}_2

$\mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_{13}, \mathbb{Z}_{15}$

${\rm D}_3, {\rm D}_5, {\rm D}_7, {\rm D}_{13}, {\rm D}_{15}$

 $\mathbb{Z}_3\times\mathbb{Z}_3$

An exact list.

While the study of $TSG(K_n)$ for n < 7 is my independent research, the study of $TSG_+(K_{4r+3})$ was first attempted by John D. O'Brien in his 2002 Pomona Senior Mathematics thesis.

While the study of $TSG(K_n)$ for n < 7 is my independent research, the study of $TSG_+(K_{4r+3})$ was first attempted by John D. O'Brien in his 2002 Pomona Senior Mathematics thesis.

Building on O'Brien's thesis, Professor Flapan and I strengthened O'Brien's results in the above theorem.

Also in the study of $TSG(K_n)$ for n < 7, I am using some theorems taken from the Pomona College Math senior thesis of Michael Yoshizawa (University of California at Santa Barbara).

While the study of $TSG(K_n)$ for n < 7 is my independent research, the study of $TSG_+(K_{4r+3})$ was first attempted by John D. O'Brien in his 2002 Pomona Senior Mathematics thesis.

Building on O'Brien's thesis, Professor Flapan and I strengthened O'Brien's results in the above theorem.

Also in the study of $TSG(K_n)$ for n < 7, I am using some theorems taken from the Pomona College Math senior thesis of Michael Yoshizawa (University of California at Santa Barbara).

Thanks to John D. O'Brien, Michael Yoshizawa and Professor Flapan.

- E. Flapan, *Rigidity of Graph Symmetries in the 3-Sphere*, Journal of Knot Theory and its Ramifications, 4, (1995), 373-388.
- E. Flapan, R. Naimi, J. Pommersheim, H. Tamvakis, Topological Symmetry Groups of Embedded Graphs in the 3-sphere, Commentarii Mathematici Helvetici, 80, (2005), 317-354.
- E. Flapan, B. Mellor, R. Naimi, Complete Graphs whose Topological Symmetry Groups are Polyhedral, Not yet published, 2010
- E. Flapan, B. Mellor, R. Naimi, *Spatial Graphs with Local Knots*, Not yet published, 2010

- E. Flapan, R. Naimi, H. Tamvakis, *Topological Symmetry Groups of Complete Graphs in the 3-Sphere*, Journal of the London Mathematical Society, **73**, (2006), 237-251.
- P. A. Smith, Transformations of finite period II, Annals of Math. 40 (1939), 690–711.