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Symmetries of graphs in S3

Studying the symmetries of graphs in S3 is a natural extension of
studying symmetries of knots.

A symmetry of a graph in S3 induces an automorphism of the
vertices which can represent the symmetry.
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Symmetries of graphs in S3

Studying the symmetries of graphs in S3 is a natural extension of
studying symmetries of knots.

A symmetry of a graph in S3 induces an automorphism of the
vertices which can represent the symmetry.
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A rotation by 90◦ followed by a reflection induces the
automorphism (1234)(56).
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Realizable automorphisms

Definition

An automorphism ϕ of an abstract graph γ is realizable if there is
some embedding Γ of γ in S3 such that a homeomorphism h of
(S3,Γ) induces ϕ on Γ.

We saw that (1234)(56) is a realizable automorphism of K6.
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Realizable automorphisms

Definition

An automorphism ϕ of an abstract graph γ is realizable if there is
some embedding Γ of γ in S3 such that a homeomorphism h of
(S3,Γ) induces ϕ on Γ.

We saw that (1234)(56) is a realizable automorphism of K6.

Theorem [F]

The automorphism (1234) of K6 is not realizable.

To prove this, we use the following.
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Ω(Γ)

Definition

For an embedding Γ of K6 in S3, let Ω be the mod 2 sum of the
linking numbers of all triangle pairs in Γ:

Ω(Γ) =
∑

A,B⊆Γ

lk(A,B) (mod 2)
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lk(A,B)=1
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Ω(Γ)

Definition

For an embedding Γ of K6 in S3, let Ω be the mod 2 sum of the
linking numbers of all triangle pairs in Γ:

Ω(Γ) =
∑

A,B⊆Γ

lk(A,B) (mod 2)
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3

45

6

A

B
lk(A,B)=1

Theorem [Conway and Gordon]

For any embedding Γ of K6 in S3, Ω(Γ) = 1.
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Proof that (1234) is not realizable

Suppose (1234) is induced by a homeomorphism h of some
embedding Γ of K6 in S3.

3 vertices in Γ define a pair of disjoint triangles and hence their
linking number.

1 2

3

45

6 415 determines this pair

L
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Proof that (1234) is not realizable

Suppose (1234) is induced by a homeomorphism h of some
embedding Γ of K6 in S3.

3 vertices in Γ define a pair of disjoint triangles and hence their
linking number.

1 2

3

45

6 415 determines this pair

L

The orbits of all 10 pairs of disjoint triangles in Γ under (1234) are:

< 123, 234, 341, 412 >

< 125, 235, 345, 415 >

< 135, 245 >
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Proof that (1234) is not realizable

Since h induces (1234), the linked triangles in a given orbit all have
the same (mod 2) linking number.
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Proof that (1234) is not realizable

Since h induces (1234), the linked triangles in a given orbit all have
the same (mod 2) linking number.

Since each orbit has an even number of elements,

Ω(Γ) =
∑

A,B⊆Γ

lk(A,B) ≡ 0 (mod 2)
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Proof that (1234) is not realizable

Since h induces (1234), the linked triangles in a given orbit all have
the same (mod 2) linking number.

Since each orbit has an even number of elements,

Ω(Γ) =
∑

A,B⊆Γ

lk(A,B) ≡ 0 (mod 2)

=⇒ ⇐= to Conway and Gordon. So (1234) is not realizable. �
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Proof that (1234) is not realizable

Since h induces (1234), the linked triangles in a given orbit all have
the same (mod 2) linking number.

Since each orbit has an even number of elements,

Ω(Γ) =
∑

A,B⊆Γ

lk(A,B) ≡ 0 (mod 2)

=⇒ ⇐= to Conway and Gordon. So (1234) is not realizable. �

Definition

The topological symmetry group of a graph Γ embedded in S3

TSG(Γ) is the subgroup of the automorphism group, Aut(Γ),
induced by homeomorphisms of (S3,Γ).
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Proof that (1234) is not realizable

Since h induces (1234), the linked triangles in a given orbit all have
the same (mod 2) linking number.

Since each orbit has an even number of elements,

Ω(Γ) =
∑

A,B⊆Γ

lk(A,B) ≡ 0 (mod 2)

=⇒ ⇐= to Conway and Gordon. So (1234) is not realizable. �

Definition

The topological symmetry group of a graph Γ embedded in S3

TSG(Γ) is the subgroup of the automorphism group, Aut(Γ),
induced by homeomorphisms of (S3,Γ).

By the above Theorem, for all n ≥ 6, TSG(Kn) 6= Sn.
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What groups can be TSG(Γ) for some Γ?
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What groups can be TSG(Γ) for some Γ?

Γ

chiral

Wheels can rotate but can’t be interchanged. Because of chiral
knot, there are no orientation reversing homeomorphisms.
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What groups can be TSG(Γ) for some Γ?

Γ

chiral

Wheels can rotate but can’t be interchanged. Because of chiral
knot, there are no orientation reversing homeomorphisms.

TSG(Γ) = Z2 × Z3 × Z4

Erica Flapan Topological Symmetry Groups and Local Knotting



Any finite abelian group can be TSG(Γ)

We can have any number of wheels with any number of spokes.

If two wheels have the same number of spokes, we can add distinct
knots so the wheels can’t be interchanged.
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Any finite abelian group can be TSG(Γ)

We can have any number of wheels with any number of spokes.

If two wheels have the same number of spokes, we can add distinct
knots so the wheels can’t be interchanged.

Γ
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Any finite abelian group can be TSG(Γ)

We can have any number of wheels with any number of spokes.

If two wheels have the same number of spokes, we can add distinct
knots so the wheels can’t be interchanged.

Γ

TSG(Γ) = Z2 × Z2 × Z4
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Any finite abelian group can be TSG(Γ)

We can have any number of wheels with any number of spokes.

If two wheels have the same number of spokes, we can add distinct
knots so the wheels can’t be interchanged.

Γ

TSG(Γ) = Z2 × Z2 × Z4

Similarly, any finite abelian group can be TSG(Γ).

Erica Flapan Topological Symmetry Groups and Local Knotting



Symmetric groups

v

w

1 2 n

non-invertible knots

chiral

Non-invertible knots =⇒ v and w cannot be interchanged.

Chiral knot =⇒ there is no orientation reversing homeomorphism.
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Symmetric groups

v

w

1 2 n

non-invertible knots

chiral

Non-invertible knots =⇒ v and w cannot be interchanged.

Chiral knot =⇒ there is no orientation reversing homeomorphism.

Any transposition (ij) is induced by twisting a pair of strands.

Thus TSG(Γ) = Sn.
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Alternating groups

Can we get the alternating group An as TSG(Γ)?

v

w

1 2 n

non-invertible knots

chiral
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Alternating groups

Can we get the alternating group An as TSG(Γ)?

v

w

1 2 n

non-invertible knots

chiral

Theorem [Flapan, Naimi, Pommersheim, Tamvakis]

TSG(Γ) can be An iff n ≤ 5.

Thus not every finite group can be TSG(Γ).
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TSG+(Γ)

Definition

TSG+(Γ) is the subgroup of TSG(Γ) induced by orientation
preserving homeomorphisms of (S3,Γ).
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TSG+(Γ)

Definition

TSG+(Γ) is the subgroup of TSG(Γ) induced by orientation
preserving homeomorphisms of (S3,Γ).

TSG+(Γ) = TSG(Γ) or is a normal subgroup with index 2.
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TSG+(Γ)

Definition

TSG+(Γ) is the subgroup of TSG(Γ) induced by orientation
preserving homeomorphisms of (S3,Γ).

TSG+(Γ) = TSG(Γ) or is a normal subgroup with index 2.

TSG 
+

(Γ)= Ζ2
× Ζ3

× Ζ4
TSG +

(Γ)= Ζ2
× Ζ3

× Ζ4

TSG (Γ)= Ζ2
× Ζ3

× Ζ4
( ) × Ζ2

TSG (Γ)= Ζ2
× Ζ3

× Ζ4
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Diff+(S3)

TSG+(Γ) is not always induced by a finite subgroup of Diff+(S3)
(group of orientation preserving diffeomorphisms of S3).

Example:

Spinning a wheel does not have finite order in S3.
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Diff+(S3)

TSG+(Γ) is not always induced by a finite subgroup of Diff+(S3)
(group of orientation preserving diffeomorphisms of S3).

Example:

Spinning a wheel does not have finite order in S3.

Not all finite abelian groups are subgroups of Diff+(S3). So
TSG+(Γ) need not even be isomorphic to a subgroup of Diff+(S3).
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3-connected graphs are special

Definition

A graph γ is 3-connected if at least 3 vertices together with their
edges must be removed in order to disconnect γ or reduce it to a
single vertex.

v

w

1 2 n

Neither of these graphs is 3-connected.
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A 3-connected example
1

3

4

5 62

3-connected
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A 3-connected example
1

3

4

5 62

3-connected

(56)(23) is induced by turning the graph over.

(153426) is induced by slithering the graph along itself while
interchanging the inner and outer knots.
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A 3-connected example
1

3

4

5 62

3-connected

(56)(23) is induced by turning the graph over.

(153426) is induced by slithering the graph along itself while
interchanging the inner and outer knots.

(153426) is not induced by a finite order homeomorphism of S3,
because a figure eight knot has no order 3 homeomorphism and
cannot be the fixed point set of a finite order homeomorphism.
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A 3-connected example
1

3

4

5 62

3-connected

(56)(23) is induced by turning the graph over.

(153426) is induced by slithering the graph along itself while
interchanging the inner and outer knots.

(153426) is not induced by a finite order homeomorphism of S3,
because a figure eight knot has no order 3 homeomorphism and
cannot be the fixed point set of a finite order homeomorphism.

TSG+(Γ) =< (56)(23), (153426) >= D6. But is not induced by a
finite group of homeomorphisms.
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A more symmetric embedding of Γ

Γ

1

4

5
2

6
3

Γ

1

4

3 65 2
re-embed

Γ′ is a more symmetric embedding of Γ.
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A more symmetric embedding of Γ

Γ

1

4

5
2

6
3

Γ

1

4

3 65 2
re-embed

Γ′ is a more symmetric embedding of Γ.

(56)(23) is induced by turning Γ′ over left to right.

(153426) is induced by a glide rotation of Γ′ that interchanges the
inner and outer circles while rotating counterclockwise.

D6 = TSG+(Γ′) is induced by an isomorphic finite subgroup of
Diff+(S3).
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Isometries

The theorem below shows that all 3-connected graphs have
symmetric embeddings like the above example.
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Isometries

The theorem below shows that all 3-connected graphs have
symmetric embeddings like the above example.

Theorem [Flapan, Naimi, Pommersheim,Tamvakis]

• Any 3-connected graph Γ embedded in S3 can be re-embedded
as Γ′ so that TSG+(Γ) ≤ TSG+(Γ′) and TSG+(Γ′) is induced
by an isomorphic finite subgroup of SO(4).

• A finite group G is isomorphic to TSG+(Γ) for some
3-connected embedded graph Γ iff G is isomorphic to a finite
subgroup of SO(4).

SO(4) = the group of orientation preserving isometries of S3.
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Are subgroups of a given TSG+(Γ) realizable?
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Are subgroups of a given TSG+(Γ) realizable?

Recall:
v

w

1 2 n

TSG  (Γ) = S  
+ n

But there is no embedding      with

TSG  (Γ ) = A  
+ n

Γ
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Are subgroups of a given TSG+(Γ) realizable?

Recall:
v

w

1 2 n

TSG  (Γ) = S  
+ n

But there is no embedding      with

TSG  (Γ ) = A  
+ n

Γ

What if Γ is 3-connected?
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Are subgroups of a given TSG+(Γ) realizable?

Recall:
v

w

1 2 n

TSG  (Γ) = S  
+ n

But there is no embedding      with

TSG  (Γ ) = A  
+ n

Γ

What if Γ is 3-connected?

Example:
1

4

5
2

6
3

Γ
TSG  (Γ) = 
 

+ 6
<(153426), (12)(45) > = D  

Is every subgroup H ≤ D6 realizable by some embedding Γ′?
To answer this we use local knotting.
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Splitting Spheres

Schubert proved that every knot can be uniquely factored into
prime knots.

Suzuki proved that every embedded graph can be split along
spheres to obtain a unique collection of prime embedded graphs.
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Splitting Spheres

Schubert proved that every knot can be uniquely factored into
prime knots.

Suzuki proved that every embedded graph can be split along
spheres to obtain a unique collection of prime embedded graphs.

However, the splitting spheres are not necessarily unique up to an
isotopy fixing the knot or graph.

e

F

2

3 5

6

1

4

T1
T2

e
2

3 5

6

1

4
F is not isotopic to 

T1 T2
or
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Unknotting balls

Definition

Let Γ be a 3-connected embedded graph. A ball meeting Γ in an
arc containing all of the local knots of an edge e is an unknotting

ball for e.

e

unknotting ball
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Uniqueness of unknotting balls

Uniqueness of Unknotting Balls [Flapan, Mellor, Naimi]

Let Γ be a 3-connected embedded graph. Then every locally
knotted edge has an unknotting ball, and this ball is unique up to
an isotopy of (S3,Γ) fixing every vertex of Γ.

e

unknotting ball
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Uniqueness of unknotting balls

Uniqueness of Unknotting Balls [Flapan, Mellor, Naimi]

Let Γ be a 3-connected embedded graph. Then every locally
knotted edge has an unknotting ball, and this ball is unique up to
an isotopy of (S3,Γ) fixing every vertex of Γ.

e

unknotting ball

Proof uses JSJ characteristic decomposition of S3 − N(Γ)
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We use Uniqueness of Unknotting Balls to prove

Knot Addition Lemma [Flapan, Mellor, Naimi]

Let e be an edge of a 3-connected embedded graph Γ and
H ≤ TSG+(Γ). Let K be a prime knot not in Γ which is invertible
iff e is inverted by an element of H. Then K can be added to the
edges in 〈e〉H to obtain Γ′ such that H ≤ TSG+(Γ′) ≤ TSG+(Γ)
and e is inverted by an element of TSG+(Γ′) iff e is inverted by an
element of H.
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We use Uniqueness of Unknotting Balls to prove

Knot Addition Lemma [Flapan, Mellor, Naimi]

Let e be an edge of a 3-connected embedded graph Γ and
H ≤ TSG+(Γ). Let K be a prime knot not in Γ which is invertible
iff e is inverted by an element of H. Then K can be added to the
edges in 〈e〉H to obtain Γ′ such that H ≤ TSG+(Γ′) ≤ TSG+(Γ)
and e is inverted by an element of TSG+(Γ′) iff e is inverted by an
element of H.

Example:
1

4

5
2

6
3

Γ
TSG  (Γ) = 
 

+ 6
<(153426), (12)(45) > = D  

Let e = 14 and H = 〈(123)〉 = Z3. Then 〈e〉H = {14, 25, 36}.
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Knot Addition Lemma =⇒ H ≤ TSG+(Γ′) ≤ TSG+(Γ)

e = 14 and H = 〈(123)〉 = Z3. Then 〈e〉H = {14, 25, 36}.

By Knot Addition Lemma:

Γ

1

4

5
2

6
3

e

Γ

TSG  (Γ) = D  
+ 6

4

5 6

3

1

2

TSG  (Γ ) = D  3+
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Knot Addition Lemma =⇒ H ≤ TSG+(Γ′) ≤ TSG+(Γ)

e = 14 and H = 〈(123)〉 = Z3. Then 〈e〉H = {14, 25, 36}.

By Knot Addition Lemma:

Γ

1

4

5
2

6
3

e

Γ

TSG  (Γ) = D  
+ 6

4

5 6

3

1

2

TSG  (Γ ) = D  3+

To prove TSG+(Γ′) ≤ TSG+(Γ), we start with
g ′ : (S3,Γ′) → (S3,Γ′) inducing some ϕ ∈ TSG+(Γ′).
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Knot Addition Lemma =⇒ H ≤ TSG+(Γ′) ≤ TSG+(Γ)

e = 14 and H = 〈(123)〉 = Z3. Then 〈e〉H = {14, 25, 36}.

By Knot Addition Lemma:

Γ

1

4

5
2

6
3

e

Γ

TSG  (Γ) = D  
+ 6

4

5 6

3

1

2

TSG  (Γ ) = D  3+

To prove TSG+(Γ′) ≤ TSG+(Γ), we start with
g ′ : (S3,Γ′) → (S3,Γ′) inducing some ϕ ∈ TSG+(Γ′).

By Uniqueness of Unknotting balls, we can assume g ′ leaves the
set of unknotting balls for Γ′ setwise invariant.
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Knot Addition Lemma =⇒ H ≤ TSG+(Γ′) ≤ TSG+(Γ)

e = 14 and H = 〈(123)〉 = Z3. Then 〈e〉H = {14, 25, 36}.

By Knot Addition Lemma:

Γ

1

4

5
2

6
3

e

Γ

TSG  (Γ) = D  
+ 6

4

5 6

3

1

2

TSG  (Γ ) = D  3+

To prove TSG+(Γ′) ≤ TSG+(Γ), we start with
g ′ : (S3,Γ′) → (S3,Γ′) inducing some ϕ ∈ TSG+(Γ′).

By Uniqueness of Unknotting balls, we can assume g ′ leaves the
set of unknotting balls for Γ′ setwise invariant.

Then define g : (S3,Γ) → (S3,Γ) as g ′ outside of unknotting balls,
and extend to Γ within these balls.
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Example

For a given H ≤ TSG+(Γ), can we re-embed Γ as Γ′ such that
TSG+(Γ′) = H?
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Example

For a given H ≤ TSG+(Γ), can we re-embed Γ as Γ′ such that
TSG+(Γ′) = H?

Example

H = 〈(123)〉 = Z3 and e = 14. Then 〈e〉H = {14, 25, 36}.

Γ

1

4

5
2

6
3

e

Γ

TSG  (Γ) = D  
+ 6

4

5 6

3

1

2

TSG  (Γ ) = D  3+

By Knot Addition Lemma, we get

Z3 = H ≤ TSG+(Γ′) = D3 ≤ TSG+(Γ) = D6

But we don’t get TSG+(Γ′) = H.
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Sometimes every subgroup is realizable

Subgroup Theorem [Flapan, Mellor, Naimi]

Let Γ be a 3-connected graph embedded in S3 with an edge e that
is not pointwise fixed by any non-trivial element of TSG+(Γ).
Then for every H ≤ TSG+(Γ), there is an embedding Γ′ of Γ with
H = TSG+(Γ′).
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Sometimes every subgroup is realizable

Subgroup Theorem [Flapan, Mellor, Naimi]

Let Γ be a 3-connected graph embedded in S3 with an edge e that
is not pointwise fixed by any non-trivial element of TSG+(Γ).
Then for every H ≤ TSG+(Γ), there is an embedding Γ′ of Γ with
H = TSG+(Γ′).

Example:
1

4

5
2

6
3

TSG  (Γ) = D  + 6

e

e is not pointwise fixed by any non-trivial element of TSG+(Γ).
Thus by Subgroup Theorem, for every H ≤ D6, there is some
embedding Γ′ of Γ with TSG+(Γ′) = H.
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Complete Graphs

We use the Subgroup Theorem to study topological symmetry
groups of complete graphs.
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Complete Graphs

We use the Subgroup Theorem to study topological symmetry
groups of complete graphs.

Complete Graph Theorem [Flapan, Naimi, Tamvakis (2006)]

A finite group H is isomorphic to TSG+(Γ) for some embedding Γ
of a complete graph in S3 if and only if H is a finite cyclic group, a
dihedral group, a subgroup of Dm × Dm for some odd m, or A4,
S4, or A5.
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Complete Graphs

We use the Subgroup Theorem to study topological symmetry
groups of complete graphs.

Complete Graph Theorem [Flapan, Naimi, Tamvakis (2006)]

A finite group H is isomorphic to TSG+(Γ) for some embedding Γ
of a complete graph in S3 if and only if H is a finite cyclic group, a
dihedral group, a subgroup of Dm × Dm for some odd m, or A4,
S4, or A5.

However, for a given n, this theorem does not tell us the groups
that can occur as TSG+(Γ) for some embedding Γ of Kn.
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Subgroups of topological symmetry groups of Kn

We use the Subgroup Theorem to prove:

Theorem [Flapan, Mellor, Naimi]

Let n > 6 and let Γ be an embedding of Kn in S3 such that
TSG+(Γ) is a finite cyclic group, a dihedral group, or a subgroup
of Dm × Dm for some odd m. Then for every H ≤ TSG+(Γ), there
is an embedding Γ′ of Kn such that H = TSG+(Γ′).
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Subgroups of topological symmetry groups of Kn

We use the Subgroup Theorem to prove:

Theorem [Flapan, Mellor, Naimi]

Let n > 6 and let Γ be an embedding of Kn in S3 such that
TSG+(Γ) is a finite cyclic group, a dihedral group, or a subgroup
of Dm × Dm for some odd m. Then for every H ≤ TSG+(Γ), there
is an embedding Γ′ of Kn such that H = TSG+(Γ′).

1

2

3

45

6

7

TSG (Γ) = D
+ 7

Example
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Subgroups of topological symmetry groups of Kn

We use the Subgroup Theorem to prove:

Theorem [Flapan, Mellor, Naimi]

Let n > 6 and let Γ be an embedding of Kn in S3 such that
TSG+(Γ) is a finite cyclic group, a dihedral group, or a subgroup
of Dm × Dm for some odd m. Then for every H ≤ TSG+(Γ), there
is an embedding Γ′ of Kn such that H = TSG+(Γ′).

1

2

3

45

6

7

TSG (Γ) = D
+ 7

Example

By above theorem, there is an embedding Γ′ with TSG+(Γ′) = Z7.
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Proof of Subgroup Theorem

Suppose e is not fixed by any non-trivial element of TSG+(Γ),
H ≤ TSG+(Γ), and K a prime knot not contained in Γ which is
invertible iff e is inverted by some element of H.
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Proof of Subgroup Theorem

Suppose e is not fixed by any non-trivial element of TSG+(Γ),
H ≤ TSG+(Γ), and K a prime knot not contained in Γ which is
invertible iff e is inverted by some element of H.

Use Knot Addition Lemma to add K to the edges in 〈e〉H .

1

4

5
2

6
3

e

H =   
3

1

4

5
2

6
3

e

Γ
Γ

Z
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Proof of Subgroup Theorem

Suppose e is not fixed by any non-trivial element of TSG+(Γ),
H ≤ TSG+(Γ), and K a prime knot not contained in Γ which is
invertible iff e is inverted by some element of H.

Use Knot Addition Lemma to add K to the edges in 〈e〉H .
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Then H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e′ is inverted by an element
of TSG+(Γ′) iff e is inverted by an element of H.
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Then H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e′ is inverted by an element
of TSG+(Γ′) iff e is inverted by an element of H.

To show TSG+(Γ′) ≤ H, let ϕ ∈ TSG+(Γ′).
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ϕ ∈ TSG+(Γ′). Want to show ϕ ∈ H .

Recall:

H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e ′ is inverted by an element of
TSG+(Γ′) iff e is inverted by an element of H .
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e′ contains K . Hence ϕ(e′) contains K .
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e′ contains K . Hence ϕ(e′) contains K .

Only the edges in 〈e′〉H contain K . Hence ϕ(e′) ∈ 〈e′〉H .
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ϕ ∈ TSG+(Γ′). Want to show ϕ ∈ H .

Recall:

H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e ′ is inverted by an element of
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e′ contains K . Hence ϕ(e′) contains K .

Only the edges in 〈e′〉H contain K . Hence ϕ(e′) ∈ 〈e′〉H .

So ∃h ∈ H such that h(e′) = ϕ(e′). Thus h−1ϕ setwise fixes e′.
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e′ contains K . Hence ϕ(e′) contains K .

Only the edges in 〈e′〉H contain K . Hence ϕ(e′) ∈ 〈e′〉H .

So ∃h ∈ H such that h(e′) = ϕ(e′). Thus h−1ϕ setwise fixes e′.

Since H ≤ TSG+(Γ′), h−1ϕ ∈ TSG+(Γ′)
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h−1
ϕ ∈ TSG+(Γ′) setwise fixes e ′. Want to show ϕ ∈ H .

Recall:

H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e ′ is inverted by an element of
TSG+(Γ′) iff e is inverted by an element of H .
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h−1
ϕ ∈ TSG+(Γ′) setwise fixes e ′. Want to show ϕ ∈ H .

Recall:

H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e ′ is inverted by an element of
TSG+(Γ′) iff e is inverted by an element of H .

If h−1ϕ doesn’t invert e′, then g = h−1ϕ ∈ TSG+(Γ) pointwise
fixes e′.

If h−1ϕ inverts e′, then e is inverted by some f ∈ H. So
g = fh−1ϕ ∈ TSG+(Γ) pointwise fixes e′.
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TSG+(Γ′) iff e is inverted by an element of H .

If h−1ϕ doesn’t invert e′, then g = h−1ϕ ∈ TSG+(Γ) pointwise
fixes e′.

If h−1ϕ inverts e′, then e is inverted by some f ∈ H. So
g = fh−1ϕ ∈ TSG+(Γ) pointwise fixes e′.

In either case, g = identity, since (by hypothesis) no non-trivial
element of TSG+(Γ) pointwise fixes e.
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h−1
ϕ ∈ TSG+(Γ′) setwise fixes e ′. Want to show ϕ ∈ H .

Recall:

H ≤ TSG+(Γ′) ≤ TSG+(Γ) and e ′ is inverted by an element of
TSG+(Γ′) iff e is inverted by an element of H .

If h−1ϕ doesn’t invert e′, then g = h−1ϕ ∈ TSG+(Γ) pointwise
fixes e′.

If h−1ϕ inverts e′, then e is inverted by some f ∈ H. So
g = fh−1ϕ ∈ TSG+(Γ) pointwise fixes e′.

In either case, g = identity, since (by hypothesis) no non-trivial
element of TSG+(Γ) pointwise fixes e.

Thus either ϕ = h ∈ H or ϕ = f −1h ∈ H.

Hence ϕ ∈ H, and therefore H = TSG+(Γ′). �
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