## On Strongly Almost Trivial Embeddings of Graphs





## Nara University of Education Ryo Hanaki

The Great Buddha of Nara

## Contents

- Definition & Notation
- Known Results
- Theorem & Corollary
- Related Topics

- G : finite graph
- f is a spatial embedding of G  $\Leftrightarrow$   $f: G \rightarrow \mathbb{R}^3$  : embedding We call f(G) a spatial graph f, f' : spatial embeddings of G f and f' are equivalent ( $f \sim f'$ )  $\Leftrightarrow \exists h : \mathbb{R}^3 \rightarrow \mathbb{R}^3$  :(possibly orientation reversing) self-homeomorphism s.t. h(f(G)) = f'(G)



## ■ G is planar ⇔ $\exists f: G \rightarrow \mathbb{R}^2$ : embedding

Hence,
 G has a trivial embedding ⇔ G is planar
 We consider only planar graphs.

- $\phi: G \rightarrow \mathbb{R}^2$ : continuous map
- $\phi$  is a <u>projection</u> of *G* 
  - $\Leftrightarrow$  The multiple points of  $\phi$  are only finitely many transversal double points away from vertices.
    - The image of a projection is also called a projection.





# ■ projection \u03c6 is trivial ⇔ only trivial spatial embeddings are obtained from \u03c6

пех.





2<sup>4</sup> spatial embeddings are trivial

- G : planar graph
- f: a spatial embedding of G
- f is <u>almost trivial</u>
  - $\Leftrightarrow \forall H \subset G (H \neq G)$ : proper subgraph,  $f|_H$  is trivial

## $\blacksquare f \text{ is trivial} \Rightarrow f \text{ is almost trivial}$

- G : planar graph
- f: a spatial embedding of G
- f is minimally knotted
  - $\Leftrightarrow$  *f* is nontrivial
    - $\forall H \subset G (H \neq G)$ : proper subgraph,  $f|_H$  is trivial
    - 🛎 ex. Brunnian link



- G : planar graph
- f: a spatial embedding of G
- f is strongly almost trivial (SAT)
  - $\Leftrightarrow f \text{ is nontrivial} \\ \exists \hat{f} : \text{ projection of } f \text{ s.t.} \\ \forall H \subset G (H \neq G) : \text{ proper subgraph, } \hat{f}|_{H} \text{ is trivial} \\ \blacksquare \text{ We call } \hat{f} \text{ SAT projection.} \end{cases}$

f is strongly almost trivial  $\Rightarrow$  *f* is minimally knotted

f is minimally knotted  $\Rightarrow$  *f* is almost trivial

**ex.**  $\theta$ -curve has a SAT embedding



Kinoshita's  $\theta$ -curve



■  $\forall G$  : planar graph without vertices of degrees  $\leq 1$ G has a minimally knotted spatial embedding

[Kawauchi, 1989], [Wu, 1993]

∃ G : planar graph which has a SAT embedding
 ∃ G : planar graph which does not have SAT embeddings

ex. handcuff graph has a SAT embedding



#### **ex.** $\theta_n$ -curve has a SAT embedding



## Theorem 1 [Huh-Oh, 2003]

G : connected planar graph without a cut vertex

G satisfies the following

1. G has no multiple edges

2. 
$$\forall e_1, e_2 \in E(G)$$
 s.t.  $e_1 \cap e_2 = \emptyset$ ,  
 $\exists C_1, C_2$ : disjoint cycles s.t.  $e_1 \in E(C_1)$ ,  $e_2 \in E(C_2)$   
3.  $\forall e_1, e_2, e_3 \in E(G)$  s.t.  $e_1 \cup e_2 \cup e_3$  is homeo. to a path

 $\exists C$ : cycle s.t.  $e_1, e_2, e_3 \in E(C)$ 

 $\Rightarrow$  G has no SAT embeddings

ex. graphs which have no SAT embeddings

 $P_5$  satisfies all assumptions of Thm 1.

K<sub>4</sub> does not satisfy the assumption 2 of Thm 1. [Huh-Oh, 2002]

Double-handcuff graph does not satisfy the assumptions 1 and 2 of Thm 1. [H, 2009]  $P_5$ 

 $K_4$ 

## Theorem 2 [H] n-bouquet has a SAT embedding





Λ

## Proposition 3 [H]

- G : disconneted graph without cut edges which is not homeo. to two disjoint circles
- $\Rightarrow$  G has no SAT embeddings



F : forest

■  $G_F$ : the graph obtained from F by adding a loop to the vertices v with  $d_F(v) \leq 1$ 





## E <u>Theorem 5</u> [H]

G : connected graph with exactly one cut edge e s.t. G is not homeo. to a handcuff graph and each comp. of G−e has at least one cycle
 ⇒ G has no SAT embeddings





## **Graph minors**

## Corollary 6 [H]

Both a property that a graph has a SAT embedding and a property that a graph has no SAT embeddings are not inherited by minors.



## **Related Topics**

A diagram D is <u>everywhere n-trivial</u>

⇔ ∀ C : subset of the set of crossings of D with n crossings

the diagram obtained from *D* by switching over/under information at the crossings of *C* represents the trivial spatial graph

A diagram D is everywhere 1-trivial

⇔ Every diagram obtained from D by switching over/under information at one crossing of D represents the trivial spatial graph

## **Related Topics**

Askitas and Stoimenow conjecture that the only knots which have an everywhere 1-trivial diagram are the trivial knot, the trefoil knot and the figure eight-knot



## **Related Topics**

