Dackground	is Kational I	angles iviontesinos	Tangles Algebraic Tar	igles
	0000000			

Unraveling Tangles

Catherine Farkas

University of Illinois at Chicago

August 18, 2010

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles

1 Background

Almost unknotted graphs

2 Ravels

- Motivation
- Definition

3 Rational Tangles

- Definitions
- Theorem for Rational Tangles
- Montesinos Tangles
 - Definitions
 - Theorem for Montesinos Tangles

5 Algebraic Tangles

- Definitions
- Theorem for Algebraic Tangles

Background ●○○○	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Almost	Unknotte	d Graphs		
Definit	ion			

A graph embedded in S^3 is almost unknotted if it is non-planar,

but every proper subgraph is planar.

Background ●○○○	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Almost Ui	nknotte	d Graphs		

A graph embedded in S^3 is almost unknotted if it is non-planar, but every proper subgraph is planar.

• Suzuki [8] gave the first example of an almost unknotted graph

Background ●○○○	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Almost Ur	nknotted	d Graphs		

A graph embedded in S^3 is almost unknotted if it is non-planar, but every proper subgraph is planar.

• Suzuki [8] gave the first example of an almost unknotted graph

Background ●○○○	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Almost Un	knotted (Graphs		

A graph embedded in S^3 is almost unknotted if it is non-planar, but every proper subgraph is planar.

• Suzuki [8] gave the first example of an almost unknotted graph

Background ●○○○	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Almost Un	knotted	Graphs		

A graph embedded in S^3 is almost unknotted if it is non-planar, but every proper subgraph is planar.

• Suzuki [8] gave the first example of an almost unknotted graph

Background ●○○○	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Almost	Unknotte	d Graphs		

A graph embedded in S^3 is almost unknotted if it is non-planar, but every proper subgraph is planar.

• Suzuki [8] gave the first example of an almost unknotted graph

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
0000				
Almost	Unknotte	$d \theta$ curves		

• Suzuki [9] generalized Kinoshita's example to a family of almost unknotted θ_n graphs for every n.

 Scharlemann [7] and Livingston [5] each reproved Suzuki's result using topological and geometric arguments; McAtee, Silver, and Williams [6] reproved the result more recently using graph colorings

- Walcott [11] showed that Kinoshita's θ_3 curve is chiral (not isotopic to its mirror image)
- Ushijima [10] showed that all of Suzuki's θ_n curves are chiral
- Hara [3] found two families of locally unknotted (no edge contains a knot) θ₄ curves where all the θ₄ curves in one family are chiral and all the curves in the other are achiral

 Hara's graphs are locally unknotted but not all are almost unknotted

• Hara's graphs are locally unknotted but not all are almost unknotted

Hara's test for planarity

Let Γ be a θ_4 graph. Then Γ is planar if and only if replacing each vertex of Γ by any rational tangle results in a knot or link whose bridge index is no greater than 2.

Background	Ravels ●○○	Rational Tangles	Montesinos Tangles	Algebraic Tangles
What is a	ravel?			

- Molecular knots and links have been chemically synthesized: proteins, organometallic compounds, DNA
- Chemists are interested in such molecules because topological characteristics can have an effect on molecular and biological behavior
- Recently, chemists became interested in the structure of an "*n-ravel*", which they defined as "an entanglement of *n* edges around a vertex that contains no knots or links" [2]

Catherine Farkas Unraveling Tangles

Background	Ravels ○●○	Rational Tangles	Montesinos Tangles	Algebraic Tangles
What is a	Ravel?			

Mathematical Definition

An *n*-ravel is an embedded θ_n graph that:

- (i) contains no nontrivial knots
- (ii) cannot be deformed to a planar graph

Background	Ravels ○●○	Rational Tangles	Montesinos Tangles	Algebraic Tangles
What is a	a Ravel?			

Mathematical Definition

An *n*-ravel is an embedded θ_n graph that:

- (i) contains no nontrivial knots
- (ii) cannot be deformed to a planar graph

Background	Ravels ○○●	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Questior	n of inter	est		

Recall:

Hara's test for planarity

Let Γ be a θ_4 graph. Then Γ is planar if and only if replacing each vertex of Γ by a rational tangle results in a knot or link whose bridge index is no greater than 2.

- By contrast, we begin with a projection of an algebraic tangle and replace a crossing with a vertex. We bring the vertices together in the boundary of the tangle ball. Can the resulting tangle be a 4-ravel?
- If a θ_4 graph is not a ravel then it is also not almost unknotted.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
		0000000		
Dational	Tanglas			

A 2-string tangle is called rational if it can be deformed to a trivial tangle when the endpoints are free to move within the boundary of the tangle ball.

Background	Ravels	Rational Tangles ●○○○○○○○	Montesinos Tangles	Algebraic Tangles
Rational 7	angles			

A 2-string tangle is called rational if it can be deformed to a trivial tangle when the endpoints are free to move within the boundary of the tangle ball.

Example

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
		••••		
Dational	Tanglas			

A 2-string tangle is called rational if it can be deformed to a trivial tangle when the endpoints are free to move within the boundary of the tangle ball.

Example

Nonexample

The denominator closure and vertex closure of a tangle are defined as shown below, where the blue arcs are in the boundary of the ball:

Denominator closure

• Alternating, 3-braid representation where each A_i represents a row of twists and the crossings alternate from one row to the next

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
		0000000		
Statement	of Theor	rem		

Rational Tangle Theorem (Farkas, Flapan, Sullivan)

Let A be a projection of a rational 2-string tangle in alternating 3-braid representation, and let A' be obtained by replacing a crossing of A with a vertex. Then the vertex closure of A' is either planar or contains a knot, and therefore is not a 4-ravel.

Example:

 Background
 Ravels
 Rational Tangles
 Montesinos Tangles
 Algebraic Tangles

 000
 000
 000
 000000
 000000

 Outline of Proof of Theorem
 Theorem

3 Cases:

- the vertex replaces a crossing in *A_n*,
- the vertex replaces a crossing in A_{n-1} ,
- the vertex replaces a crossing anywhere else

Case 1: The vertex replaces a crossing in A_n

- Untwist the crossings in A₁.
- Once the crossings in A₁ have been removed, we can untwist the crossings in A₂.
- Continue this process until all crossings have been removed. Thus, the graph is planar.

 If A_n has only one crossing, then we can deform the graph to a plane using a similar technique to that used in Case 1.

 If A_n has only one crossing, then we can deform the graph to a plane using a similar technique to that used in Case 1.

 We show that if A_n has more than one crossing, then either the graph is not a θ₄ graph or it contains a knot.

Consider the subtangle of A containing $A_n, A_{n-1}, \ldots, A_{i+1}$ where the vertex v is in A_i :

• If the subtangle only has two crossings, then the original graph is not a θ_4 graph, and therefore is not a ravel.

Consider the subtangle of A containing $A_n, A_{n-1}, \ldots, A_{i+1}$ where the vertex v is in A_i :

• If the subtangle only has two crossings, then the original graph is not a θ_4 graph, and therefore is not a ravel.

 If the subtangle has three or more crossings and is a θ₄ graph, then the graph contains a knot and is not a ravel.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
			00000	

A projection of a Montesinos tangle A is said to be in reduced form if it is written as a sum of a minimal number of rational tangles (over all possible projections).

Background	Ravels	Rational Tangles	Montesinos Tangles ○○●○○○	Algebraic Tangles
Theorem	for Monte	sinos Tangles		

Montesinos Tangle Theorem (Farkas, Flapan, Sullivan)

Given a projection A of a Montesinos tangle $A = A_1 + A_2 + \cdots + A_n$ in reduced form where each A_i is a rational tangle and A itself is not rational, let A' be obtained by replacing a crossing of A with a vertex. If the vertex closure of A'is a θ_{4} graph, then it contains a knot and therefore is not a ravel.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
			000000	

Note: If the vertex replaces a crossing in A_i and the vertex closure of A' is a θ_4 graph, then the denominator closure of A_k is a (possibly trivial) knot for all $k \neq i$.

The vertex closure of A'

That is, the denominator closure of each A_k is forced to have only one component.

Background	Ravels	Rational Tangles	Montesinos Tangles ○○○○●○	Algebraic Tangles
Outline of	Proof			

Suppose that for some k the denominator closure of A_k is a trivial knot.

Then, A is not in reduced form, contrary to our hypothesis.

Background	Ravels	Rational Tangles	Montesinos Tangles ○○○○○●	Algebraic Tangles
Outline of	proof			

Therefore, the denominator closure of every A_k is a nontrivial knot.

In this case, we can show the vertex closure of A' contains a knot and therefore is not a ravel.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Definition				
			Example:	
Tangles	s can be mu T S $T \times S$	ltiplied:	Contraction (C)	324
Definition	1			
Given rati	ional tangle	5	602	

tangle is any tangle obtained by adding and multiplying A_1, A_2, \ldots, A_n .

 A_1, A_2, \ldots, A_n , an algebraic

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ●○○○○○○○○
Definitic	on			
			Example:	
Tang	les can be n T S $T \times S$	nultiplied:	NW A ₁ A ₂ A ₁ A ₄ A ₅	NE
Definition	on			V
Given ra $A_1, A_2,$ tangle is by addin $A_1, A_2,$	ational tang \ldots, A_n , and s any tangle ng and mult \ldots, A_n .	les algebraic e obtained iplying	sw $[(A_1 + A_2 + A_3) \times A_6] + A_7 + A_6$	$SE = A_4 \times A_5 \times A_8 + A_9$

Backg	round	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○●○○○○○○○
	Definition				
	A projection expressed and a min of the tang	on of an with a m imal num gle).	algebraic tangle is inimal number of r iber of parentheses	in <i>reduced form</i> if i rational tangles A ₁ , s (over all possible p	t is , <i>A_n</i> projections

Backgrou	und	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
ſ	Definition				
A e a c	A projectio expressed w and a minin of the tang	n of an alge vith a minin mal number ;le).	braic tangle is in <i>i</i> nal number of ratio of parentheses (or	reduced form if it is onal tangles A ₁ , ver all possible proje	, A _n ections

• If an algebraic tangle is in reduced form, then we cannot combine subtangles to form a rational tangle.

Background	ound Ravels Rational Tangles Montesinos Tangles Algebraic T 000 00000000 0000000 0000000 000000000			
Definit	ion			
A proj	ection of an	algebraic tangle is	in <i>reduced form</i> if i	t is
and a	minimal nun	nber of parenthese	s (over all possible p	projections

- If an algebraic tangle is in reduced form, then we cannot combine subtangles to form a rational tangle.
- *Ex.* A tangle containing this $A_i + A_{i+1}$ is not in reduced form.

Background	RavelsRational TanglesMontesinos TanglesAlgeb0000000000000000000000000			
Definit	ion			
A proj	ection of an	algebraic tangle is	in reduced form if i	t is
express	sed with a m	ninimal number of	rational tangles A_1 ,	, A _n
and a	minimal nun	nber of parenthese	s (over all possible p	projections
of the	tangle)			

- If an algebraic tangle is in reduced form, then we cannot combine subtangles to form a rational tangle.
- *Ex.* A tangle containing this $A_i + A_{i+1}$ is not in reduced form.

• $((A_1 + A_2) + (A_3 \times A_4)) \times A_5$ is not in reduced form since we can rewrite it as $(A_1 + A_2 + (A_3 \times A_4)) \times A_5$.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
				000000000

Let A be a projection of an algebraic tangle in reduced form containing: $(R + (Q \times P))$, $((Q \times P) + R)$, $(R \times (Q + P))$, or $((Q + P) \times R)$, where R and at least one of P or Q is rational. Then we say A contains a *bad triangle*.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
				000000000000000000000000000000000000000
Theorer	n for Alge	braic Tangles		

Theorem (Farkas, Flapan, Sullivan)

Let A be a projection of a nonrational algebraic tangle in reduced form that does not contain any bad triangles. Let A' be obtained by replacing a crossing of A by a vertex. If the vertex closure A' is a θ_4 graph, then A' contains a knot and hence is not a ravel.

Here is a counterexample when A contains a bad triangle:

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Countere				

• θ_4 graph that contains no knots, but is non-planar, so it is a ravel.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Countere	example v	with Bad Triar	ngle	

- θ_4 graph that contains no knots, but is non-planar, so it is a ravel.
- Since it contains a non-planar θ_3 , it is not almost unknotted.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○○○○○●○○○○
Outline of	Proof			

Proof of Theorem is by induction on the number n of rational tangles in A. Recall that A is written with a minimal number of rational tangles.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○○○○○●○○○○
Outline of	Proof			

Proof of Theorem is by induction on the number n of rational tangles in A. Recall that A is written with a minimal number of rational tangles.

Base Case:

- Since A is not rational, $n \neq 1$.
- Suppose n = 2. Then, $A = A_1 + A_2$ or $A = A_1 \times A_2$ for some rational tangles A_1 and A_2 .

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
				000000000
Outline	of Droof			

Proof of Theorem is by induction on the number n of rational tangles in A. Recall that A is written with a minimal number of rational tangles.

Base Case:

• Since A is not rational, $n \neq 1$.

ruui

- Suppose n = 2. Then, $A = A_1 + A_2$ or $A = A_1 \times A_2$ for some rational tangles A_1 and A_2 .
- $A_1 \times A_2$ can be expressed as a sum of two tangles:

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
				000000000
Outling	of Droof			

Proof of Theorem is by induction on the number n of rational tangles in A. Recall that A is written with a minimal number of rational tangles.

Base Case:

• Since A is not rational, $n \neq 1$.

ruui

- Suppose n = 2. Then, $A = A_1 + A_2$ or $A = A_1 \times A_2$ for some rational tangles A_1 and A_2 .
- $A_1 \times A_2$ can be expressed as a sum of two tangles:

• Since we have already proved the result for Montesinos tangles, this completes the base case.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
Outline of	Proof			

Inductive Step:

Either A = C₁ + · · · + C_m or A = C₁ × · · · × C_m for some m ≤ n, where each C_i is an algebraic tangle satisfying the hypotheses of the theorem.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○○○○○●○○○
Outline of	Proof			

Inductive Step:

- Either $A = C_1 + \cdots + C_m$ or $A = C_1 \times \cdots \times C_m$ for some $m \le n$, where each C_i is an algebraic tangle satisfying the hypotheses of the theorem.
- Without loss of generality, $A = C_1 + \cdots + C_m$ and the vertex replaces a crossing in $C = C_1 + \cdots + C_{m-1}$. Let $D = C_m$.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○○○○○●○○○
Outline of	Proof			

Inductive Step:

- Either $A = C_1 + \cdots + C_m$ or $A = C_1 \times \cdots \times C_m$ for some $m \le n$, where each C_i is an algebraic tangle satisfying the hypotheses of the theorem.
- Without loss of generality, $A = C_1 + \cdots + C_m$ and the vertex replaces a crossing in $C = C_1 + \cdots + C_{m-1}$. Let $D = C_m$.

Case 1: C is not rational.

If C is not rational then, by the inductive hypothesis, the vertex closure of C' contains a knot. It follows that the vertex closure of A' will contain a knot.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
0000	000	0000000	000000	0000000000

• If both *C* and *D* are rational, then we are in the base case. So, we assume that *D* is not rational.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
				0000000000

- If both *C* and *D* are rational, then we are in the base case. So, we assume that *D* is not rational.
- Since A is in reduced form, D = P₁ × ··· × P_r for some r ≥ 2 where all P_i are algebraic tangles. So A = C + (P₁ × ··· × P_r).

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
0000	000	0000000	000000	0000000000

- If both C and D are rational, then we are in the base case. So, we assume that D is not rational.
- Since A is in reduced form, D = P₁ × ··· × P_r for some r ≥ 2 where all P_i are algebraic tangles. So A = C + (P₁ × ··· × P_r).
- Since A contains no bad triangles, either r > 2 or $D = P_1 \times P_2$ where neither P_1 nor P_2 is rational.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
				0000000000

- If both *C* and *D* are rational, then we are in the base case. So, we assume that *D* is not rational.
- Since A is in reduced form, D = P₁ × ··· × P_r for some r ≥ 2 where all P_i are algebraic tangles. So A = C + (P₁ × ··· × P_r).
- Since A contains no bad triangles, either r > 2 or $D = P_1 \times P_2$ where neither P_1 nor P_2 is rational.

In either case, the denominator closure of D is a non-trivial knot by Bonahon and Siebenmann's Classification of Algebraic Knots [1].

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles
0000	000	0000000	000000	0000000000

- If both *C* and *D* are rational, then we are in the base case. So, we assume that *D* is not rational.
- Since A is in reduced form, D = P₁ × ··· × P_r for some r ≥ 2 where all P_i are algebraic tangles. So A = C + (P₁ × ··· × P_r).
- Since A contains no bad triangles, either r > 2 or $D = P_1 \times P_2$ where neither P_1 nor P_2 is rational.

In either case, the denominator closure of D is a non-trivial knot by Bonahon and Siebenmann's Classification of Algebraic Knots [1].

So the vertex closure of A' will also contain a knot.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○○○○○○○○●○
Future Re	esearch			

Recall our counterexample:

• In this example, we see that there is a nonplanar, proper subgraph. Therefore the graph is not almost unknotted.

Background	Ravels	Rational Tangles	Montesinos Tangles	Algebraic Tangles ○○○○○○○○●○
Future Re	esearch			

Recall our counterexample:

• In this example, we see that there is a nonplanar, proper subgraph. Therefore the graph is not almost unknotted.

If we obtain a 4-ravel from an algebraic tangle by replacing a crossing with a vertex and taking the vertex closure of the resulting graph, can it ever be almost unknotted?

Backg	round
0000	

Ravels

Rational Tangles

Montesinos Tangles

Algebraic Tangles 000000000

References

F. Bonahon and L. Siebenmann, New Geometric Splittings of Classical Knots, and the Classification and
Symmetries of Arborescent Knots, preprint 2010. Available at
http://www-bcf.usc.edu/ fbonahon/Research/Preprints/Preprints.html

T. Castle, M. Evans, S. T. Hyde, Ravels: knot-free but not free. Novel entanglements of graphs in 3-space, New Journal of Chemistry. 32, 1489-1492.

M. Hara, Symmetry of θ_A -curves, Tokyo J. Math. 14, (1991), 7–16.

S. Kinoshita. On Elementary Ideals of Polyhedra in the 3-sphere. Pacific J. Math., 42, (1972), 89-98.

- C. Livingston, Knotted Symmetric Graphs, Proc. AMS, 123, (1995), 963-967.
- J. McAtee, D. Silver, S. Williams, Coloring Spatial Graphs, J. Knot Theory and its Ramifications, 10, (2001). 109-120.

M. Scharlemann, Some Pictorial Remarks on Suzuki's Brunnian Graph, (1992), 351-354,

S. Suzuki, On Linear Graphs in 3-sphere, Osaka J. Math., 7, (1970), 375-396.

S. Suzuki, Almost Unknotted θ_n -curves in the 3-Sphere, Kobe J. Math., 1, (1984), 19–22,

A. Ushijima, The Canonical Decompositions of Some Family of Compact Orientable Hyperbolic 3-Manifolds with Totally Geodesic Boundary, Geometriae Dedicata, 78, (1999), 21-47.

K. Walcott. The knotting of theta curves and other graphs in S^3 . Geometry and topology (Athens, Ga.,

1985), Lecture Notes in Pure and Appl. Math., 105, Dekker, New York, (1987), 325–346.