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Almost Unknotted Graphs

Definition

A graph embedded in S3 is almost unknotted if it is non-planar,
but every proper subgraph is planar.

Suzuki [8] gave the first
example of an almost
unknotted graph

Kinoshita [4] gave an
example of an almost
unknotted θ3 graph
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Almost Unknotted θn curves

Suzuki [9] generalized Kinoshita’s example to a family of
almost unknotted θn graphs for every n .

Scharlemann [7] and Livingston [5] each reproved Suzuki’s
result using topological and geometric arguments; McAtee,
Silver, and Williams [6] reproved the result more recently
using graph colorings
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Chirality of Almost Unknotted θn curves

Walcott [11] showed that Kinoshita’s θ3 curve is chiral (not
isotopic to its mirror image)

Ushijima [10] showed that all of Suzuki’s θn curves are chiral

Hara [3] found two families of locally unknotted (no edge
contains a knot) θ4 curves where all the θ4 curves in one
family are chiral and all the curves in the other are achiral
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Chirality of Almost Unknotted θn curves

Hara’s graphs are locally unknotted but not all are almost
unknotted

Hara’s test for planarity

Let Γ be a θ4 graph. Then Γ is planar if and only if replacing each
vertex of Γ by any rational tangle results in a knot or link whose
bridge index is no greater than 2.
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What is a ravel?

Molecular knots and links have been chemically synthesized:
proteins, organometallic compounds, DNA
Chemists are interested in such molecules because topological
characteristics can have an effect on molecular and biological
behavior
Recently, chemists became interested in the structure of an
“n-ravel”, which they defined as “an entanglement of n edges
around a vertex that contains no knots or links” [2]

A 3-ravel
Catherine Farkas Unraveling Tangles
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What is a Ravel?

Mathematical Definition

An n-ravel is an embedded θn graph that:

(i) contains no nontrivial knots

(ii) cannot be deformed to a planar graph

3-ravel 4-ravel
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Question of interest

Recall:

Hara’s test for planarity

Let Γ be a θ4 graph. Then Γ is planar if and only if replacing each
vertex of Γ by a rational tangle results in a knot or link whose
bridge index is no greater than 2.

By contrast, we begin with a projection of an algebraic tangle
and replace a crossing with a vertex. We bring the vertices
together in the boundary of the tangle ball. Can the resulting
tangle be a 4-ravel?

If a θ4 graph is not a ravel then it is also not almost
unknotted.
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Rational Tangles

Definition

A 2-string tangle is called rational if it can be deformed to a trivial
tangle when the endpoints are free to move within the boundary of
the tangle ball.

Example

NW

SW

NE

SE

Nonexample

NENW

SESW

Catherine Farkas Unraveling Tangles



Background Ravels Rational Tangles Montesinos Tangles Algebraic Tangles

Rational Tangles

Definition

A 2-string tangle is called rational if it can be deformed to a trivial
tangle when the endpoints are free to move within the boundary of
the tangle ball.

Example

NW

SW

NE

SE

Nonexample

NENW

SESW

Catherine Farkas Unraveling Tangles



Background Ravels Rational Tangles Montesinos Tangles Algebraic Tangles

Rational Tangles

Definition

A 2-string tangle is called rational if it can be deformed to a trivial
tangle when the endpoints are free to move within the boundary of
the tangle ball.

Example

NW

SW

NE

SE

Nonexample

NENW

SESW

Catherine Farkas Unraveling Tangles



Background Ravels Rational Tangles Montesinos Tangles Algebraic Tangles

More definitions

The denominator closure and vertex closure of a tangle are defined
as shown below, where the blue arcs are in the boundary of the ball:

T

Denominator closure

T w

Vertex closure
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General form of rational tangle

Alternating, 3-braid representation where each Ai represents a
row of twists and the crossings alternate from one row to the
next

A1

A2

A3

An-1

An

NW NE

SESW
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Statement of Theorem

Rational Tangle Theorem (Farkas, Flapan, Sullivan)

Let A be a projection of a rational 2-string tangle in alternating
3-braid representation, and let A′ be obtained by replacing a
crossing of A with a vertex. Then the vertex closure of A′ is either
planar or contains a knot, and therefore is not a 4-ravel.

Example:
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Outline of Proof of Theorem

3 Cases:

the vertex replaces a
crossing in An,

the vertex replaces a
crossing in An−1,

the vertex replaces a
crossing anywhere else

A1

A2

A3

An-1

An

NW NE

SESW
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Case 1: The vertex replaces a crossing in An

Untwist the crossings in
A1.

Once the crossings in A1

have been removed, we
can untwist the crossings
in A2.

Continue this process
until all crossings have
been removed. Thus, the
graph is planar.
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Case 2: The vertex replaces a crossing in An−1

If An has only one crossing,
then we can deform the
graph to a plane using a
similar technique to that
used in Case 1.

We show that if An has
more than one crossing,
then either the graph is not
a θ4 graph or it contains a
knot.
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Case 3: The vertex is not in An or An−1

Consider the subtangle of A containing An,An−1, . . . ,Ai+1 where
the vertex v is in Ai :

If the subtangle only has two
crossings, then the original
graph is not a θ4 graph, and
therefore is not a ravel.

If the subtangle has three or
more crossings and is a θ4

graph, then the graph contains
a knot and is not a ravel.

Catherine Farkas Unraveling Tangles



Background Ravels Rational Tangles Montesinos Tangles Algebraic Tangles

Case 3: The vertex is not in An or An−1

Consider the subtangle of A containing An,An−1, . . . ,Ai+1 where
the vertex v is in Ai :

If the subtangle only has two
crossings, then the original
graph is not a θ4 graph, and
therefore is not a ravel.

If the subtangle has three or
more crossings and is a θ4

graph, then the graph contains
a knot and is not a ravel.

Catherine Farkas Unraveling Tangles



Background Ravels Rational Tangles Montesinos Tangles Algebraic Tangles

Definition

Tangles can be added: T + S = T S

Definition

A Montesinos tangle is the sum of a finite number of rational
tangles.

A1 AnA2
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Definition

A projection of a Montesinos tangle A is said to be in reduced form
if it is written as a sum of a minimal number of rational tangles
(over all possible projections).

Catherine Farkas Unraveling Tangles
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Theorem for Montesinos Tangles

Montesinos Tangle Theorem (Farkas, Flapan, Sullivan)

Given a projection A of a Montesinos tangle
A = A1 + A2 + · · ·+ An in reduced form where each Ai is a
rational tangle and A itself is not rational, let A′ be obtained by
replacing a crossing of A with a vertex. If the vertex closure of A′

is a θ4 graph, then it contains a knot and therefore is not a ravel.

A1 AnA2

Ai

v

w
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Note: If the vertex replaces a crossing in Ai and the vertex closure
of A′ is a θ4 graph, then the denominator closure of Ak is a
(possibly trivial) knot for all k 6= i .

A1 AnA2

Ai

v

w

The vertex closure of A′

That is, the denominator closure of each Ak is forced to have only
one component.
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Outline of Proof

Suppose that for some k the denominator closure of Ak is a trivial
knot.

Then, A is not in reduced form, contrary to our hypothesis.

Catherine Farkas Unraveling Tangles



Background Ravels Rational Tangles Montesinos Tangles Algebraic Tangles

Outline of proof

Therefore, the denominator closure of every Ak is a nontrivial knot.

In this case, we can show the vertex closure of A′ contains a knot
and therefore is not a ravel.
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Definition

Tangles can be multiplied:

T

S

T × S

Definition

Given rational tangles
A1,A2, . . . ,An, an algebraic
tangle is any tangle obtained
by adding and multiplying
A1,A2, . . . ,An.

Example:
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Definition

Tangles can be multiplied:

T

S

T × S

Definition

Given rational tangles
A1,A2, . . . ,An, an algebraic
tangle is any tangle obtained
by adding and multiplying
A1,A2, . . . ,An.

Example:

[(A1 + A2 + A3)× A4 × A5 ×
A6] + A7 + A8 + A9
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Definition

A projection of an algebraic tangle is in reduced form if it is
expressed with a minimal number of rational tangles A1, . . . , An

and a minimal number of parentheses (over all possible projections
of the tangle).

If an algebraic tangle is in reduced form, then we cannot
combine subtangles to form a rational tangle.

Ex. A tangle containing this Ai + Ai+1 is not in reduced form.

A
i A

i+1
+

((A1 + A2) + (A3 × A4))× A5 is not in reduced form since we
can rewrite it as (A1 + A2 + (A3 × A4))× A5.
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Definition

Let A be a projection of an algebraic tangle in reduced form
containing:
(R + (Q × P)), ((Q × P) + R), (R × (Q + P)), or ((Q + P)× R),
where R and at least one of P or Q is rational. Then we say A
contains a bad triangle.

R

Q

P

(R + (Q × P))
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Theorem for Algebraic Tangles

Theorem (Farkas, Flapan, Sullivan)

Let A be a projection of a nonrational algebraic tangle in reduced
form that does not contain any bad triangles. Let A′ be obtained
by replacing a crossing of A by a vertex. If the vertex closure A′ is
a θ4 graph, then A′ contains a knot and hence is not a ravel.

Here is a counterexample when A contains a bad triangle:

R

Q

P

R + (Q × P)
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Counterexample with Bad Triangle

R

Q

P

R + (Q × P)

θ4 graph that contains no knots, but is non-planar, so it is a
ravel.

Since it contains a non-planar θ3, it is not almost unknotted.
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Outline of Proof

Proof of Theorem is by induction on the number n of rational
tangles in A. Recall that A is written with a minimal number of
rational tangles.

Base Case:

Since A is not rational, n 6= 1.
Suppose n = 2. Then, A = A1 + A2 or A = A1 × A2 for some
rational tangles A1 and A2.
A1 × A2 can be expressed as a sum of two tangles:

Since we have already proved the result for Montesinos
tangles, this completes the base case.
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Outline of Proof

Inductive Step:

Either A = C1 + · · ·+ Cm or A = C1 × · · · × Cm for some
m ≤ n, where each Ci is an algebraic tangle satisfying the
hypotheses of the theorem.

Without loss of generality, A = C1 + · · ·+ Cm and the vertex
replaces a crossing in C = C1 + · · ·+ Cm−1. Let D = Cm.

Case 1: C is not rational.
If C is not rational then, by the inductive hypothesis, the vertex
closure of C ′ contains a knot. It follows that the vertex closure of
A′ will contain a knot.
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Case 2: C is rational

If both C and D are rational, then we are in the base case.
So, we assume that D is not rational.

Since A is in reduced form, D = P1 × · · · × Pr for some r ≥ 2
where all Pi are algebraic tangles. So A = C + (P1×· · ·×Pr ).

Since A contains no bad triangles, either r > 2 or
D = P1 × P2 where neither P1 nor P2 is rational.

In either case, the denominator closure of D is a non-trivial knot by
Bonahon and Siebenmann’s Classification of Algebraic Knots [1].

So the vertex closure of A′ will also contain a knot. �
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Future Research

Recall our counterexample:

R

Q

P

R + (Q × P)

In this example, we see that there is a nonplanar, proper
subgraph. Therefore the graph is not almost unknotted.

If we obtain a 4-ravel from an algebraic tangle by replacing a
crossing with a vertex and taking the vertex closure of the resulting
graph, can it ever be almost unknotted?
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