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Abstract:

A graph is 2–apex if it is planar after the deletion of at most

two vertices. Such graphs are not intrinsically knotted, IK.

We investigate the converse, does not IK imply 2–apex? We

determine the simplest possible counterexample, a graph on

nine vertices and 21 edges that is neither IK nor 2–apex. In

the process, we show that every graph of 20 or fewer edges is

2–apex.
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2–apex =⇒ not IK

Proposition: [BBFFHL,OT] A graph of the form H ∗K2 is IK

if and only if H is non–planar.

Corollary: If G is 2–apex, then G is not IK.

Idea: Then G − a, b = H is planar and G is a subgraph of

the non IK graph H ∗ K2.

Main Theorem: All graphs of 20 or fewer edges are 2–apex.

Corollary: An IK graph has at least 21 edges.

(Proved independently by Johnson, Kidwell, and Michael.)
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Does non IK =⇒ 2–apex?

The converse is not true.

Example: K6 ⊔ K6 is neither IK nor 2-apex.

Simplest counterexample is a graph on nine vertices and 21

edges, E9.
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Figure 1. An unknotted embedding of E9.
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A Strategy for Classifying IK graphs.

But, exceptions may be rare, e.g., only 8 up to 9 vertices.

On the other hand, may be many minor minimal IK graphs.

This suggests a new classification strategy.

Problem 15: Classify the graphs that are neither IK nor 2–

apex.

Then G is not IK if

1) G is 2-apex or

2) G is in the class of Problem 15.
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Proof of Main Theorem

Let G be a graph of 20 edges, i.e., ∥G∥ = 20.

Six cases depending on the number of vertices, |G|.

1. |G| ≤ 8, 2. |G| = 9, 3. |G| = 10,

4. |G| = 11, 5. |G| = 12, and 6. |G| ≥ 13.

Today we’ll look at the first and last case.

Strategy: Assume G is not 2–apex.

=⇒ ∀a, b G − a, b non-planar.

Using this assumption, show

∃G − a, b planar (contradiction)
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Case 1: |G| ≤ 8.

If |G| ≤ 7, then G is a proper subgraph of K7,

hence 2–apex.

So, assume |G| = 8.

Maximum Degree ∆(G)

∆(G) ≤ 7 (vertex has at most 7 neighbours).

On the other hand ∆(G) ≥ 5 since 4 × 8 ≤ 40.

Note: minimum degree δ(G) ≥ 3.
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Then, |G| = 8, 5 ≤ ∆(G) ≤ 7, and δ(G) ≥ 3

Claim: ∃a, b ∋ ∥G − a, b∥ ≤ 10

Proof: Let a be a vertex of maximal degree.

If d(a) = 7, then,

7 + 3 × 7 = 28 < 40 =⇒ ∃b with d(b) ≥ 4.

If d(a) = 6, then,

6 + 4 × 7 = 34 < 40 =⇒ ∃b with d(b) ≥ 5.

If d(a) = 5, then, ∀v, d(v) = 5,

Choose b so that it’s not adjacent to a.

(Here, ∥G − a, b∥ = 10.)
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Then, |G| = 8, 5 ≤ ∆(G) ≤ 7, and δ(G) ≥ 3

and ∃a, b ∋ ∥G − a, b∥ ≤ 10

Then G − a, b = K3,3 or K3,3 ∪ v1v2.

Subcase i: G − a, b = K3,3

Let V (K3,3) = {v1, v2, v3, w1, w2, w3}.

We can assume 7 or 6 = d(a) ≥ d(b).

Then ∥N(a) ∩ N(b) ∩ V (G − a, b)∥ ≥ 4.

(Indeed, if d(a) = 7, then d(b) = 5.

If d(a) = 6, then d(b) = 5 or 6.)

So, we can assume v1, v2 are in intersection.
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Subcase i: G − a, b = K3,3 and |G| = 8.

We can assume 6 or 7 = d(a) ≥ d(b) and

{v1, v2} ∈ N(a) ∩ N(b) ∩ V (G − a, b).

If d(a) = 7, then G − a, v1 is planar.

b

Figure 2. G − a, v1

If d(a) = 6, then

G − a, v1 not planar =⇒ {w1, w2, w3} ⊂ N(b)

(Same as figure above with one extra edge from b.)
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Subcase i: G − a, b = K3,3 and |G| = 8.

We can assume 6 = d(a) ≥ d(b) = 6 or 5,

{v1, v2} ∈ N(a) ∩ N(b) ∩ V (G − a, b),

and {w1, w2, w3} ∈ N(b).

Then G − a, w1 is planar.

b

Figure 3. G − a, w1

This completes subcase i.
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Subcase ii: G − a, b = K3,3 ∪ v1v2 and |G| = 8.

Here, d(b) ≤ d(a) ∈ {5, 6, 7}.

If d(a) = 5, then d(b) = 5, too, and they’re not adjacent.

Then, ∥N(a) ∩ N(b)∥ is 4 or 5.

If 5, then WLOG, v1 ∈ N(a) ∩ N(b)

=⇒ d(v1) = 6 (contradiction)

So, N(a) ∩ N(b) = {v3, w1, w2, w3}.

Then G − v3, w1 is planar.
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Subcase ii: G − a, b = K3,3 ∪ v1v2 and |G| = 8.

d(b) ≤ d(a) ∈ {5, 6, 7}.

If d(a) = 5, then G − v3, w1 is planar.

Figure 4. G − v3, w1 is planar. Unlabelled vertices are a and b.

So, we can assume d(a) = 6 or 7. Then d(b) ≤ 5.
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Subcase ii: G − a, b = K3,3 ∪ v1v2 and |G| = 8.

d(b) ≤ 5 < d(a) ≤ 7.

Claim: {w1, w2, w3} ⊂ N(b).

Otherwise, G − a, v1 is planar:

b

Figure 5. G − a, v1
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Case 1: |G| ≤ 8 and ∥G∥ = 20.

Subcase ii: G − a, b = K3,3 ∪ v1v2 and |G| = 8.

d(b) ≤ 5 < d(a) ≤ 7.

and {w1, w2, w3} ⊂ N(b).

Then G − a, w1 is planar.

b

Figure 6. G − a, w1

This completes proof of Case 1.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

If |G| > 13, then δ(G) ≤ 3 as

3 × 14 = 42 > 40.

But then we can remove v with d(v) ≤ 2

Induction =⇒ G − v is 2-apex whence G is also.

So assume |G| = 13. Again δ(G) ≥ 3 implies

Degree Sequence = {4, 3, 3, . . . , 3}.

Let d(a) = 4 and choose b not adjacent to a.

Then ∥G − a, b∥ = 13.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

We can assume |G| = 13, d(a) = 4, d(b) = 3,

and ∥G − a, b∥ = 13.

Also ∆(G − a, b) = 3, and δ(G − a, b) ≥ 1.

Then χ(G − a, b) = 11 − 13 = −2.

G− a, b non-planar =⇒ component with K5 or K3,3 minor.

Now, χ(K5) = 5 − 10 = −5.

Taking minors cannot increase χ.

Non tree components have χ ≤ 0.

Since δ(G − a, b) ≥ 1, the only possibility is

G − a, b = K5 ⊔ K2 ⊔ K2 ⊔ K2.

However, this contradicts ∆(G − a, b) = 3.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

|G| = 13, ∆(G − a, b) = 3, δ(G − a, b) ≥ 1

and χ(G − a, b) = −2.

So, G − a, b has a component C1 with K3,3 minor.

χ(K3,3) = 6 − 9 = −3.

δ(G − a, b) ≥ 1 =⇒

At most two trees in addition to C1.

So, χ(C1) = −3 or −4.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

Subcase i χ(C1) = −3.

Here ∃!T (tree) with 2 ≤ |T | ≤ 5.

If |T | = 2, then C1 = G − a, b \ T is non planar

|C1| = 9 and ∥C1∥ = 12.

Since ∆(C1) = 3 and δ(C1) ≥ 1, ∃v with d(v) = 2.

Then C1 is K3,3 ∪ C3

or a graph below + v.

Figure 7. Obtain C1 by adding v with d(v) = 2.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

Subcase i χ(C1) = −3.

Assume ∃!T with |T | = 2, i.e., T = K2.

Then C1 = G − a, b − T is K3,3 ⊔ C3

or one of the graphs above + v.

If G − a, b = K2 ⊔ K3,3 ⊔ C3,

then G − a, c is planar where c ∈ V (K3,3).

(Since a is the unique vertex of degree 4

in G, N(b) ∩ V (K3,3) = ∅.)

On the other hand if C1 is as in figure above,

G − a, v1 is planar.

This completes case where |T | = 2.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

Subcase i χ(C1) = −3.

Assume ∃!T with |T | = 3

Then C1 = G − a, b \ T is one of four graphs:

Figure 8. C1 is one of these four.

In any case G − a, v1 is planar.

This completes case where |T | = 3.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

Subcase i χ(C1) = −3.

Assume ∃!T with |T | = 4

Here C1 = G − a, b \ T must be the graph

Figure 9. C1 in case |T | = 4.

Again, G − a, v1 is planar.

Similarly, if |T | = 5, then C1 = K3,3

and G − a, v1 is planar.

This completes Subcase i.
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Case 6: |G| ≥ 13 and ∥G∥ = 20.

Subcase ii χ(C1) = −4.

∃T1 and T2.

But δ(G − a, b) ≥ 1 =⇒ T1 = K2 and |T2| = 2 or 3.

If |T2| = 2, then T2 = K2, too

and C1 = G − a, b \ (T1 ⊔ T2) has

|C1| = 7 and |C1| = 11.

Then C1 is

Figure 10. C1 in case |T | = 4.

whence G − a, v1 is planar.



23

Case 6: |G| ≥ 13 and ∥G∥ = 20.

Subcase ii χ(C1) = −4.

∃T1 and T2 with T1 = K2 and |T2| = 2 or 3.

If |T2| = 3, then C1 = G − a, b \ (T1 ⊔ T2)

has |C1| = 6 and ∥C1∥ = 10.

So, C1 = K3,3 ⊔ v1v2.

This is a contradiction as a is the unique vertex of degree 4.

This completes the argument in Case 6.


