An algorithm for detecting intrinsically knotted graphs, yielding many new minor minimal IK graphs Ramin Naimi, Occidental College

18-Aug-2010

Joint work with:

Thomas Mattman (California State Univ., Chico)

Noam Goldberg (Undergraduate research at Occidental College)

Jonathan Miller (Undergraduate research at Occidental College) Definition:

A graph G is **intrinsically knotted** (IK) if every embedding of G in S^3 contains a nontrivial knot.

Theorem (Conway & Gordon, 1983): K_7 is IK.

Main question: Which graphs are IK?

Definition:

H is a **minor** of G if H can be obtained from a subgraph of G by contracting edges.

Definition:

G is **minor minimal intrinsically knotted** (MMIK) if G is IK but no minor of G is IK.

Example: K_7 is MMIK: if we delete or contract any edge, it will have a "knotless" embedding (i.e., no nontrivial knots). Fact: A graph is IK iff it has a MMIK minor. (proof is easy)

The Graph Minor Theorem (Robertson, Seymour, 1986-97: 20 papers, 500 pages) In every infinite set of graphs, at least one is a minor of another.

Corollary: Given *any* property, there are finitely many minor minimal graphs with that property.

 \Rightarrow Finitely many MMIK graphs

Corollary: IKness is decidable. (But we don't know how!)

Proof:

Let S = finite set of MMIK graphs.

Given any graph G, check whether there is a graph in S that is a minor of G.

Known MMIK graphs

- *K*₇ (Conway & Gordon, 1983)
- $K_{3,3,1,1}$ (Foisy, 2000)
- Graphs obtained from K_7 and $K_{3,3,1,1}$ by ∇Y moves (Kohara & Suzuki, 1990)
- *F*_{13,30} (Foisy, 2002)

Total: 41 graphs.

Foisy (2006) found 4 more IK graphs. It is not known if they are MM. But he showed they don't contain any of the above 41 as minors.

Goldberg, Mattman, & N. (2009) : 222 new MMIK graphs.

Definition: ∇Y move:

Terminology:

Parent $\xrightarrow{\nabla Y}$ Child Ancestor $\xrightarrow{\nabla Y} \cdots \xrightarrow{\nabla Y}$ Descendant Cousin $\xrightarrow{M_1} \cdots \xrightarrow{M_n}$ Cousin, $M_i = \nabla Y$ or $Y \nabla$, $n \ge 0$.

Theorem (Sachs 1983, Motwani, Raghunathan, Saran 1988): If G is IK, its descendants are also IK.

The K_7 family consists of 20 graphs:

14 graphs: K_7 and its descendants already known to be MMIK.

6 graphs: cousins but not descendants of K_7 are not IK.

(Hanaki, Nikkuni, Taniyama, Yamazaki, arXiv. Goldberg, Mattman, N., still writing up!)

New MMIK graphs

— $K_{3,3,1,1}$ family:

58 graphs: all are MMIK!

(This answers Question 3.3 of the problem list)

26 graphs: $K_{3,3,1,1}$ and its descendants were already known to be MMIK

58 - 26 = 32 new MMIK graphs

 $-E_9 + e$ family:

110 cousins; all are IK.

Only 33 are MMIK.

— G_{28} family:

Complement of $G_{28} = 7$ -cycle + one edge :

1601 cousins, all IK.

We verified 156 as MMIK.

Out of 461 tested, the program reported that *probably*: 458 MMIK, 3 not MMIK.

— Monster family:

Over 600,000 cousins (we don't know exactly how many)

Obtained from an IK minor of a non-IK descendant of G_{28} , G28C1413SM6SM14SM40 (25 edges):

G28C1413SM6SM14SM40 itself is MMIK. But it seems most of its cousins are not IK.

New MMIK graphs: 32 + 33 + 156 + 1 = 222

Is it worthwhile to search for more? (I think there are probably thousands more!) D_4 graph:

Definition: A spatial D_4 is **double linked** if $lk(C_1, C_3) \neq 0$, and $lk(C_2, C_4) \neq 0$.

 D_4 Lemma:

[Taniyama & Yasuhara, 2001. Foisy(mod2) 2001]: If a spatial graph G contains a double linked D_4 as a minor, then G contains a nontrivial knot.

Corollary:

If every embedding of G has a double linked D_4 as a minor, then G is IK.

Definition: If an embedding of a graph contains no double linked D_4 as a minor, we call it a D_4 -less embedding.

Our computer program searches for D_4 -less embeddings.

Outline of algorithm:

1. Find all **quads**, i.e., sets of cycles (C_1, C_2, C_3, C_4) that can "produce" a D_4 .

- 2. For each pair of disjoint edges e_i, e_j , let x_{ij} denote the total number of signed crossings between e_i and e_j .
- 3. For each pair of disjoint cycles C, C', write lk(C, C') in terms of the variables x_{ij} .
- 4. For each quad (C_1, C_2, C_3, C_4) , let $lk(C_1, C_3) = 0$ or $lk(C_2, C_4) = 0$
- 5. Solve systems of linear equations.

- If there are Q quads, there are 2^Q systems of equations.
- If none of the systems has a solution, then there is no D_4 -less embedding; so G is IK.
- If one of the systems has a solution, the solution may help us find a knotless embedding for G.

Question 1:

G has a D_4 -less embedding \Rightarrow G has a knotless embedding?

If true, then our computer program decides IKness.

Question 2:

G has a D_4 -less embedding \Rightarrow *G* has an Arfless embedding?

(i.e., every cycle has Arf = 0)

Question 3:

G has an Arfless embedding \Rightarrow G has a knotless embedding?

For all of the above, " \Leftarrow " is true.

Have written a similar program for deciding if a graph is intrinsically linked (IL).

The program relies on a result of [RST] (Robertson, Seymour, Thomas):

$G \text{ is IL} \iff G \text{ is "IL mod 2"}.$

Note: By [RST], we can check if a graph is IL by simply checking if it contains a Petersen Family minor. I don't know if such a program has been written yet.

It might be possible to answer other questions using similar computer programs; e.g.,

Problem 2.2 of problem list: Does every spatial embedding of $K_{4,4,4}$ contain two disjoint, non-split, 2-component links?

Useful lemma for proving MM:

Lemma [GMN]: If G is IK and has a MMIK child, then G is MMIK.

Example: In $K_{3,3,1,1}$ family, first prove the orphans (cousins 1, 12, 41, 58) are IK; then prove the infertiles (cousins 29, 31, 42, 53) are MM.

